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Review of Fault Tree Analysis
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Fault Tree Analysis
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Pump 2 fails
No water to the 

pump

P2

No water to V5V5 fails closed

V5

No water from 

pump 2

No water from 

V3

No water from 

V4

V4 fails closed

V4

No water to V4

R2

No water to V3 

from reservoir 1

V1 fails closed

V1

No water to V1

R1

V3 fails closed

V3

1 Component failure models
• Limited maintenance process detail

No Repair:

Revealed:  

Unrevealed: 

• Constant failure and repair rates

• Snap-shot in time  
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The Fundamental Elements:

Efficient FTA
Binary Decision Diagrams
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Binary Decision Diagrams (BDDs)

Root Vertex

Event A fails

Event A works

Intermediate vertices  

(Basic Events)

Terminal-1

(Top Event occurs)

Terminal-0

(Top Event non-

occurrence)

Ordering of Basic Events:     A < B <  C

A

B

C
1

1 0

1

1

0

1

0

0



Binary Decision Diagram 
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ORDERING  A < B < C
Top Event

C

Gate 1 Gate 2

A B C

A

B

C
1

1 0

1

1

0

1

0

0

Min Cut Sets:  {C}, { A, B}



Top Event Probability

+  OR

.    AND

• Exact

• Fast 

• Efficient

A

B

C
1

1 0

1

1

0

1

0

0

No need to derive the Min Cut 

Sets as an intermediate step
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Fault Tree to BDD Conversion 
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Basic Event Ordering: A < B < C
Top Event

C

Gate 1 Gate 2

A B C

Generate the Logic Equation 

represented by the Fault Tree

TOP = Gate1 . Gate2

= (A + C) . (B + C)



BDD Construction From Logic Equation
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A

(A+C).(B+C)



BDD Construction From Logic Equation
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A

(A+C).(B+C)

(B+C)

1



BDD Construction From Logic Equation
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A

(A+C).(B+C)

(B+C) C.(B+C)

1 0



BDD Construction From Logic Equation
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A

(A+C).(B+C)

(B+C) C.(B+C)

C

B B

1

1

1 0

0



BDD Construction From Logic Equation
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A

(A+C).(B+C)

(B+C) C.(B+C)

C

B B

C C1

1

1 10 0

0



BDD Construction From Logic Equation
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Irrelevant NodeA

(A+C).(B+C)

(B+C) C.(B+C)

C

B

C

B

C C1

1 0

1

1 1

1 0

0 0

0

B

C

1 0

A

1

1

0

0

0

1

1



16

if-then-else (ite)  Notation

For node A

if A (=1) then

consider function  f1=B+C

else

consider function  f2=C.(B+C)

ite notation

TOP = ite(A, f1, f2)

A

(A+C).(B+C)

(B+C) C.(B+C)

C

B

C

B

C C1

1 0

1

1 1

1 0

0 0

0
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if-then-else (ite)  BDD Definition 

Defining each node as an ite structure

TOP=ite(A, f1, f2)

f1=ite(B, 1, f2)

f2=ite(C, 1, 0)

TOP=ite(A, ite(B, 1, f2) , f2)

TOP=ite(A, ite(B, 1, ite(C, 1, 0)) , ite(C, 1, 0) )

B

C

1 0

A

1

1

0

0

0

1

1
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BDD Generation Using ite Rules

- Define all Basic Events

e.g.     A = ite(A, 1, 0)

- If   G=ite(X, g1, g2) and H=ite(Y, h1, h2)

then: 

ite(X, g1  H, g2  H)     if X<Y

G  H=

ite (X, g1  h1, g2  h2)   if X=Y

 = AND 

or OR

- Apply bottom-up to each gate in the fault tree

- Use simplification rules

G + 1 = 1    G + 0 = G

G . 1 = G G . 0 = 0

ite( X, f1, f1) = f1
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Example

TOP

GATE 1 GATE 2

A C B C

Ordering A < B < C

Basic Events:

A=ite(A, 1, 0)

B=ite(B, 1, 0)

C=ite(C, 1, 0)

GATE1 = A + C

= ite(A,1 ,0)+ ite(C,1 ,0)

= ite(A, 1+ ite(C,1 ,0) , 0+ite(C,1 ,0) )

= ite(A, 1, ite(C,1 ,0) )

i𝑓 𝐺 = 𝑖𝑡𝑒 𝑋, 𝑔1, 𝑔2
𝐻 = 𝑖𝑡𝑒 𝑌, ℎ1, ℎ2

then:

𝐺 ⊕𝐻 = ቊ
𝑖𝑡𝑒 𝑋, 𝑔1⊕𝐻, 𝑔2⊕𝐻 𝑖𝑓 𝑋 < 𝑌

𝑖𝑡𝑒 𝑋, 𝑔1⊕ ℎ1, 𝑔2⊕ ℎ2 𝑖𝑓 𝑋 = 𝑌
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Example

TOP

GATE 1 GATE 2

A C B C

GATE1 = B + C

= ite(B,1 ,0) + ite(C,1 ,0)

= ite(B, 1+ ite(C,1 ,0) , 0+ite(C,1 ,0) )

= ite(B, 1, ite(C,1 ,0) )

i𝑓 𝐺 = 𝑖𝑡𝑒 𝑋, 𝑔1, 𝑔2
𝐻 = 𝑖𝑡𝑒 𝑌, ℎ1, ℎ2

then:

𝐺 ⊕𝐻 = ቊ
𝑖𝑡𝑒 𝑋, 𝑔1⊕𝐻, 𝑔2⊕𝐻 𝑖𝑓 𝑋 < 𝑌

𝑖𝑡𝑒 𝑋, 𝑔1⊕ ℎ1, 𝑔2⊕ ℎ2 𝑖𝑓 𝑋 = 𝑌
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Example

TOP

GATE 1 GATE 2

A C B C

TOP = GATE1 . GATE2

= ite(A, 1, ite(C,1 ,0) ).ite(B, 1, ite(C,1 ,0) )

= ite(A, 1. ite(B, 1, ite(C,1 ,0) , 

ite(C,1 ,0) .ite(B, 1, ite(C,1 ,0) )

= ite(A, ite(B, 1, ite(C,1 ,0) ,

ite(B, 1. ite(C,1 ,0) , ite(C,1 ,0). ite(C,1 ,0) )

= ite(A, ite(B, 1, ite(C,1 ,0) ,

ite(B, ite(C,1 ,0) , ite(C,1 ,0) )

= ite(A, ite(B, 1, ite(C,1 ,0) , ite(C,1 ,0) )

i𝑓 𝐺 = 𝑖𝑡𝑒 𝑋, 𝑔1, 𝑔2
𝐻 = 𝑖𝑡𝑒 𝑌, ℎ1, ℎ2

then:

𝐺 ⊕𝐻 = ቊ
𝑖𝑡𝑒 𝑋, 𝑔1⊕𝐻, 𝑔2⊕𝐻 𝑖𝑓 𝑋 < 𝑌

𝑖𝑡𝑒 𝑋, 𝑔1⊕ ℎ1, 𝑔2⊕ ℎ2 𝑖𝑓 𝑋 = 𝑌
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Example - cont

TOP = ite(A, ite(B, 1, ite(C, 1 ,0) ,

ite(C, 1 ,0) )

B

C

1 0

A

1

1

0

0

0

1

1
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Example - cont

TOP = ite(A, ite(B, 1, ite(C, 1 ,0) ,

ite(C, 1 ,0) )

B

C

1 0

A

1

1

0

0

0

1

1
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Minimal Cut Sets

A.B

A.C

C

The paths deliver Cut Sets: 

The list of component 

failed states which result in 

system failure.

The BDD can be processed 

to deliver a BDD (Zero-

suppressed BDD) which 

encodes only the Minimal 

Cut Sets:  

The list of component 

failures which is necessary 

and sufficient to cause 

system failure.

Causes of Failure

B

C

1 0

A

1

1

0

0

0

1

1

B

C

1 0

A

1

1

0

0

1

1

0

0

A.B

C



Variable Ordering Methods
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Ordering Example

26

Top Event

Gate 2

A B C B D

Gate 1

D

A

1

0

B

1

1
0

0

0
1

1

C

1

0
1

0
TOP = (A + B + C) . (B + D)

= B + A.D + C.D

Ordering:  B < D < A < C

• 3 paths through the BDD

• 3 minimal cut sets



Ordering Example

27

Top Event

Gate 2

A B C B D

Gate 1

TOP = (A + B + C) . (B + D)

= B + A.D + C.D

Ordering:  C < A < D < C

• 5 paths through the BDD

• 3 minimal cut sets

C

D

1

0

A

1
0

0

0

1

1

B

1

0
1

0

D

B1
1

1

1 0

0

0

B
1

1

0
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Variable Ordering

• Ordering scheme selected can have a dramatic 

effect on the analysis.

• Good gives an efficient analysis

• Bad can make problem intractable

• A common approach is a systematic traversal of 

the fault tree structure such as:

• Top-down, left-right
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Ordering Heuristics

TOP-DOWN, LEFT-RIGHT:

TOP EVENT

GATE 1

GATE 7GATE 6

GATE 3 GATE 5GATE 4

GATE 2A

AE

GFGK

H

B C

D

LEVEL 1

LEVEL 4

LEVEL 3

LEVEL 2

A

B, C

H, E, D

K, G, F

A<B<C<H<E<D<K<G<F
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Variable Ordering Schemes

• Many other ordering schemes can be used

• Alternatives to these ‘neighbourhood’ methods are 

based on ‘structural importance’.

• ‘Structural importance’ methods allow nodes to be 

selected from anywhere in the tree structure. Nodes are 

allocated a ‘weighting’ which indicates their 

contribution to the top event.  Highest ‘weightings’ 

ordered first.

• Neural Network selection methods.



System Failure Frequency
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The Criticality Function, Gi(q), is the probability that the system is in a critical 

state for component i such that the failure of component i causes system failure.

wi(t) is the failure intensity of component i.

probability that the system fails with component i failed

probability that the system fails with component i working

𝑄𝑆𝑌𝑆 1𝑖 , 𝒒

𝑄𝑆𝑌𝑆 0𝑖 , 𝒒

𝐺𝑖 𝒒 =
𝜕𝑄𝑆𝑌𝑆
𝜕𝑞𝑖

= 𝑄𝑆𝑌𝑆 1𝑖 , 𝒒 − 𝑄𝑆𝑌𝑆 0𝑖 , 𝒒

𝑤𝑆𝑌𝑆(𝑡) = ෍
𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟𝑠

𝐺𝑖 𝒒 .𝑤𝑖 (𝑡)



Dependencies and Complexities in 
Engineering Systems
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Complexity – non-constant rates
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Motor 
Working

Motor 
Failed

W(β,η) 

LN(μ,σ)

Non-constant Failure / Repair Rates

Failure Time Distribution

• Component experiences wear-out

• Systems operating beyond their 

design life

• Weibull failure time distributions 

are common 

Repair Time Distribution 

• Repair is not a random process

• Lognormal repair time 

distributions are common



Hot Standby

Both pumps are 

operational but the 

fluid is just driven by 

P1.  On failure of P1, 

the fluid now passes 

through P2

P1 & P2 Independent

Dependency - Standby

34

P1

P2

Standby System
• Pump P1 operational.

• When P1 fails P2 takes over the duty

Warm Standby

Pump P2 is not 

operational in standby.  

It becomes operational 

when P1 fails.  It can 

fail in standby but 

with a lower rate than 

when operational.

P1 & P2 Dependent

Cold Standby

Pump P2 is not 

operational in standby.  

It becomes operational 

when P1 fails.  It 

cannot fail in standby.

P1 & P2 Dependent



Dependency Examples
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Type Description Example

Secondary 

Failure

When one component fails it increases the load on a 

second component which then experiences an 

increased failure rate  

Two pumps both operational and 

sharing the load.  Each pump has 

the capability to deliver the full 

demand should the other pump 

fail

Opportunistic 

Maintenance

A component fails which causes a system shutdown 

or the requires specialist equipment for the repair.

The opportunity is taken to do work on a second 

component which has not failed but is in a degraded 

state 

Components on a circuit board.

Components in a sub-sea 

production module

Common 

Cause

When one characteristic (eg materials, manufacturing, 

location, operation, installation maintenance) causes 

the degraded performance in several components

Incorrect maintenance done on 

several identical sensors

Impact breaks the circuit on 

cables routed in the same way to 

different redundant channels 

Queueing Failed components all needing the same maintenance 

resource are queued.  Then repaired in priority order 

Limited number of maintenance 

teams, equipment or spares



Modelling 
Dependencies and Complexities in 

Engineering Systems

36



Outputs

• The probability of being 

in each state at time t.

Solution

• Numerical Methods

Markov Analysis

37

λ1 λ2

λ1 λ2

P1F

P2F

P1F

P2W

P1W

P2W

P1F

P2W

0.5ν

ν

ν

1

2

3

4

Characteristics

• State – based method

• States represent the system states

• Memoryless property

• Exponential distribution for state 

residence times (constant transition 

rates)

𝑃 𝑋𝑡+𝑑𝑡 = 𝑘 𝑋𝑡= 𝑗, 𝑋𝑡−𝑑𝑡 = 𝑖, 𝑋𝑡−2𝑑𝑡 = ℎ,… , 𝑋0 = 𝑎

= 𝑃 𝑋𝑡+𝑑𝑡 = 𝑘 𝑋𝑡 = 𝑗

( ሶ𝑃1, ሶ𝑃2, ሶ𝑃3, … , ሶ𝑃𝑛) = (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

−λ1,1 ⋯ λ1,𝑛
⋮ ⋱ ⋮

λ𝑛,1 ⋯ −λ𝑛,𝑛



Model Development - Markov State Transition Diagram

• Identify all possible states.

• List all transitions between states (failures/repairs).

Model Analysis

• Develop one equation for each state on the diagram (state 

equations).

• Solve equations to find probability of being in each state.

Markov Modelling Procedure

38



States:     

Working (W)

Failed (F)

Transitions:  

Failure (W      F)

Repair  (F       W)

Outputs:

PF(t) = probability of component  failed at time t

PW(t) = probability of component working at time t

unavailability

availability

Single Component Failure Model

λ

W

ν

1 2

F

39



Derive the Transition Rate Matrix

λ

W

ν

1 2

F

Rate of change of state i probability =

- ( rate of leaving state i) x P(residing in state i)

+෍
𝑗=1
𝑗≠𝑖

𝑛

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑗 × 𝑃(𝑟𝑒𝑠𝑖𝑑𝑖𝑛𝑔 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑗)

𝑑𝑃𝑊(𝑡)

𝑑𝑡
= −λ𝑃𝑊 𝑡 + ν𝑃𝐹(𝑡)

𝑑𝑃𝐹(𝑡)

𝑑𝑡
= λ𝑃𝑊 𝑡 − ν𝑃𝐹(𝑡)

40



Denote:

Derive the Transition Rate Matrix (A)

41

𝑑𝑃𝑊(𝑡)

𝑑𝑡
= −λ𝑃𝑊 𝑡 + ν𝑃𝐹(𝑡)

𝑑𝑃𝐹(𝑡)

𝑑𝑡
= λ𝑃𝑊 𝑡 − ν𝑃𝐹(𝑡)

𝑑𝑃𝑊(𝑡)

𝑑𝑡
𝑏𝑦 ሶ𝑃𝑊

𝑑𝑃𝐹(𝑡)

𝑑𝑡
𝑏𝑦 ሶ𝑃𝐹

ሶ𝑃𝑊 𝑡 ሶ𝑃𝐹 𝑡 = 𝑃𝑊 𝑃𝐹 .
−λ λ
ν −ν

ሶ𝑷 = 𝑷. [𝑨]

𝑨 =
−λ λ
ν −ν

Therefore in Matrix form:



Rules:

• The dimension of the matrix is equal to the number of states.

• Element i, j (ith row, jth col) represents the transition rate from 

state i to state j.

• A diagonal element i,i is the total transition rate out of state i

(always negative).       (All rows sum to zero).

Transition Rate Matrix

42

W

1 2

F 𝑨 =
−λ λ
ν −ν

λ

ν



B

B

A

B

B A

A – F

B – W

2

A – W

B – F

3

A – W

B – W

1

A – F

B – F

4

A

A

Two component parallel system 

(availability model)

B

B

A

B

B A

A – F

B – W

2

A – W

B – F

3

A – W

B – W

1

A – F

B – F

4

A

A

System failed

Example – 2 Component System

43

Two component series system 

(availability model)

𝑄𝑆𝑌𝑆 = 𝑃4

System failed

𝑄𝑆𝑌𝑆 = 𝑃2+ 𝑃3+ 𝑃4



1

2


21

fr
o

m
:

to:

3

4

43

Transition rate matrix:

B 0

0 B

(A  B) A

A (B  A)

(A  B) AB 0

A (A  B)0 B

[A]

Example –Availability Model

44

B

B

A

B

B A

A – F

B – W

2

A – W

B – F

3

A – W

B – W

1

A – F

B – F

4

A

A



Dependency Example
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λ1 λ2

λ1 λ2

P1F

P2F

P1F

P2W

P1W

P2W

P1F

P2W

0.5ν

ν

ν

1

2

3

4

Pumps P1 and P2 operate together to provide a flow.  Should one pump fail then the second can 

deliver the required flow on its own.   However, when one fails it puts an extra load on the other and 

increases its failure rate from λ1 to λ2.

Pump Failure:   

λ1 = 2.0 x 10-5 per hour     Normal Load

λ2 = 5.0 x 10-3 per hour     Full Load

Pump Repair:

ν = 0.041667 (MTTF = 24hrs)

ν2 = 0.5 ν.

State 

Number

State State 

Probability

Intensity Expression State Intensity

1 0.99743518

2 0.00042747

3 0.00042747

4 0.00170988



The Fundamental Elements:
Petri Nets

46



Petri Net Basics and Definitions

47

D1 D2

D3

1 1 3 2

2 3

5

4

Places
Conditions, available 

resources, counters

Tokens
Mark places

Represent the current 

status of the system 

Dj

Transitions
• Time delay Dj at 

which transitions 

occur

• Immediate Dj = 0

• Timed Dj >0

Edges
• Input edges 

- place to transition

• Output edges 

- transition to place



D1 D2

D3

1 1 3 2

2 3

5

4

If all input places of a transition are 
marked by at least one token then 
this transition is called enabled.

After a delay D  0 the transition 
fires. 

• removes one token from each of its 
input places 

• adds one token to each of its output 
places. 

Petri Net Modelling

48

D1 D2

D3

1 1 3 2

2 3

5

4

After D1



Multigraph Weighted Edge

Dj

2

1

3

4

5

Dj

2
2

3

2

1

3

4

5

Weighted  Edges

49



Blocks a transition when the input place is marked.

0 0

0

transition fires

transition does 

not fire
0

1

1

1

1

Inhibit  Edges

50



Characteristics
• Any distribution of times to transition

• Capable of modelling very complex maintenance 

strategies

• Concise structure

Outputs
• Produces distributions of:

• duration in any state

• no of incidences of entering any 

state

Solution
• Monte Carlo Simulation

Petri Net Modelling

51

D1 D2

D3

1 1 3 2

2 3

5

4



Dependency Example
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Hx1 Working Hx1 Failed
W(β,η) 

Hx2 Working

0.0

Opportunistic Maintenance Dependency 
Heat Exchangers Hx1 & Hx2 

- when either heat exchanger fails it needs 

intrusive maintenance requiring specialist 

equipment 

- both are of the same age and operate in the 

same environment

- the second will fail in the not too distant 

future

- repair both at the same time 

- Hx1 – initiator,    Hx2 - enabler



Dependency Example
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Hx1 Working Hx1 Failed
W(β,η) 

Hx2 Workng

Hx2 Failed

unrevealed

W(β,η) 

No 

inspection

θ

0.01

0.0

0.0

0.0

inspection

Hx2 Failed

revealed



Dependency Example
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Hx1 Working Hx1 Failed
W(β,η) 

Hx2 Workng

Hx2 Failed

unrevealed

W(β,η) 

Hx2 Failed

revealed

No 

inspection

θ

0.01

0.0

0.0

0.0

inspection

Hx1 Fails when 

Hx2 unrevealed

0.0

0.0



Monte Carlo Simulation

Petri Net Analysis - Simulation

55



• Inverse Transform Technique

• F(t) has the same range and properties as the U(0,1) distribution

• U(0,1) can be generated by Random Numbers (X).

time

F(t)

0
0

1.0

t

X

Sampling from Distributions

56



time

F(t)

0
0

1.0

t

X

Exponential Distribution

57

𝑓(𝑡) =
1

𝜇
𝑒
−
𝑡
𝜇 μ – mean time to failure

𝐹 𝑡 = 𝑋 = 1 − 𝑒
−
𝑡
𝜇

𝐹 𝑡 = න
0

𝑡

𝑓 𝑢 𝑑𝑢 = 1 − 𝑒
−
𝑡
𝜇

Generate a random, X

𝑡 = −𝜇ln(1 − 𝑋)

𝑡 = −𝜇ln(𝑋)



time

F(t)

0
0

1.0

t

X

Weibull Distribution

58

𝑓(𝑡) =
𝛽𝑡𝛽−1

𝜂𝛽
𝑒
−

𝑡
𝜂

𝛽

𝐹 𝑡 = 1 − 𝑒
−

𝑡
𝜂

𝛽

𝑡 ≥ 0, 𝛽 ≥ 1, 𝜂 ≥ 1

𝐹 𝑡 = 𝑋 = 1 − 𝑒
−

𝑡
𝜂

𝛽

𝑒
−

𝑡
𝜂

𝛽

= 1 − 𝑋

𝑡

𝜂

𝛽

= −𝑙𝑛(1 − 𝑋)

𝑡 = 𝜂 −𝑙𝑛(1 − 𝑋)
1
𝛽

𝑡 = 𝜂 −𝑙𝑛(𝑋)
1
𝛽

Generate a random number, X



D1 D2

D3

1 1 3 2

2 3

5

4

Generate random samples from 

the transition distributions

Petri Net Simulation Example

59



Simulation

60

Generate random samples from 

the transition distributions

10 20

5

1 1 3 2

2 3

5

4
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Generate random samples from 

the transition distributions

Transition 1 fires at time=10

(Generate next random sample 

for t1 = 16)

10 20

5

1 1 3 2

2 3

5

4

Simulation
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Generate random samples from 

the transition distributions

Transition 1 fires at time=10

(Generate next random sample 

for t1 = 16)

16 20

5

1 1 3 2

2 3

5

4

Simulation
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Generate random samples from 

the transition distributions

Transition 1 fires at time=10

(Generate next random sample 

for t1 = 16)

Transition t2 and t3 enabled.  
t3 fires at time = 15 (10+5)
Generate next random sample 
for t3=21

16 20

5

1 1 3 2

2 3

5

4

Simulation
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Generate random samples from 

the transition distributions

Transition 1 fires at time=10

(Generate next random sample 

for t1 = 16)

Transition t2 and t3 enabled.  
t3 fires at time = 15
Generate next random sample 
for t3=21

16 20

21

1 1 3 2

2 3

5

4

Simulation
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Generate random samples from 

the transition distributions

Transition 1 fires at time=10

(Generate next random sample 

for t1 = 16)

Transition t2 and t3 enabled.  
t3 fires at time = 15
Generate next random sample 
for t3=21

Transition t1 enabled and fires at 

time = 31 (15+16)

Generate next random sample 

for t1 = 8

16 20

21

1 1 3 2

2 3

5

4

Simulation
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Generate random samples from 

the transition distributions

Transition 1 fires at time=10

(Generate next random sample 

for t1 = 16)

Transition t2 and t3 enabled.  
t3 fires at time = 15
Generate next random sample 
for t3=21

Transition t1 enabled and fires at 

time = 31

Generate next random sample 

for t1 = 8

8 20

21

1 1 3 2

2 3

5

4

Simulation
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Generate random samples from 

the transition distributions

Transition 1 fires at time=10

(Generate next random sample 

for t1 = 16)

Transition t2 and t3 enabled.  
t3 fires at time = 15
Generate next random sample 
for t3=21

Transition t1 enabled and fires at 

time = 31

Generate next random sample 

for t1 = 8

Transitions t2 and t3 enabled.

t2 fires at time=51 (31+20)

Generate next random sample 

for t2=17

8 20

21

1 1 3 2

2 3

5

4

Simulation
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Generate random samples from 

the transition distributions

Transition 1 fires at time=10

(Generate next random sample 

for t1 = 16)

Transition t2 and t3 enabled.  
t3 fires at time = 15
Generate next random sample 
for t3=21

Transition t1 enabled and fires at 

time = 31

Generate next random sample 

for t1 = 8

Transitions t2 and t3 enabled.

t2 fires at time=51 (31+21

Generate next random sample 

for t2=17

8 17

21

1 1 3 2

2 3

5

4

Simulation
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Generate random samples from 

the transition distributions

Transition 1 fires at time=10

(Generate next random sample 

for t1 = 16)

Transition t2 and t3 enabled.  
t3 fires at time = 15
Generate next random sample 
for t3=21

Transition t1 enabled and fires at 

time = 31

Generate next random sample 

for t1 = 8

Transitions t2 and t3 enabled.

t2 fires at time=51

Generate next random sample 

for t2=17

Statistics of system performance 

obtained by recording the time 

duration in each place or the 

number of transitions to each 

place

8 17

21

1 1 3 2

2 3

5

4

Simulation



Complexity Example
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Motor 
Working

Motor 
Failed

W(β,η) 

LN(μ,σ)

STATE Probability Frequency (per 

hour)

Motor 

Failed

0.0058389642 8.686868 x 10-5 

C1 = {MOTOR}

Failure time distribution  

Weib(β=2.1,η=1200 hours)  

Repair time distribution   

LogN(μ=24.0 hours,σ=4.8 hours)
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State Probabilities:

P(Hx1W, Hx2W)=0.98646987828725829

P(Hx1W, Hx2F)=0.0135301

P(Hx1F, Hx2F)=0.0

P(Hx1F)=0.0

P(Hx2F| Hx1F)=0.0

P(Hx2F| Hx1W)= 0.0135301

State Failure Intensities

w(Hx1F, Hx2_unrevealed)=3.1709792 x 10-07   /hour

w(Hx1F, Hx2W)=1.8161063 x 10-05 /hour

w(Hx1F)=1.8478161 x 10-05  /hour

Dependency Example

Hx1 Working Hx1 Failed
W(β,η) 

Hx2 Workng

Hx2 Failed

unrevealed

W(β,η) 

Hx2 Failed

revealed

No 

inspection

θ

0.01

0.0

0.0

0.0

inspection

Hx1 Fails when 

Hx2 unrevealed

0.0

0.0



Characteristics
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Whole system modelling can be challenging:

Model Size

• Models can become large for full system analysis

• State-space explosion for Markov models

Model Solution Times

• Models solution can be computationally intensive

• Monte Carlo Simulation analysis for Petri Nets can have 

long convergence times when systems are large or system 

failures are rare

Auditability

• Lack the causality structure of Fault Trees

• Peer review and auditing difficult for regulators



FTA Approaches to Modelling 
Complexities and Dependencies

73
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TOPTOP

TOPG17

TOPG8

TOPG9

TOPG13TOPG12

TOPG4TOPG3

TOPG14TOPG6

TOPG19

G20G24G1

G2

G16G15G5

G18G7

G11G10

421 7

3 4

2

12

5 6 18 19

8 116 24

15

13 14

109

22 23

TOPG2120 21

G25 G26

TOPG22

2116 1017 10

G24

20

G23

TOPG17

G18

13 14

15

16

WARM SPARE

λ1 λ2

λ1 λ2

P1F

P2F

P1F

P2W

P1W

P2W

P1W

P2F

2ν

ν

ν

1

2

3

4

Dynamic Fault Trees
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TOPTOP

TOPG17

TOPG8

TOPG9

TOPG13TOPG12

TOPG4TOPG3

TOPG14TOPG6

TOPG19

G20G24G1

G2

G16G15G5

G18G7

G11G10

421 7

3 4

2

12

5 6 18 19

8 116 24

15

13 14

259

22 23

TOPG2120 21

G25 G26

TOPG22

30

1
16 1017 10

G29

29

G23

TOPG28

G27

26 27

28

30

Independent Modules

Dependencies 

between 

27 and 29



TOPTOP

TOPG17

TOPG8

TOPG9

TOPG13TOPG12

TOPG4TOPG3

TOPG14TOPG6

TOPG19

G20G24G1

G2

G16G15G5

G18G7

G11G10

421 7

3 4

2

12

5 6 18 19

8 116 24

15

13 14

259

22 23

TOPG2120 21

G25 G26

TOPG22

30

1
16 1017 10

G29

29

G23

TOPG28

G27

26 27

28

30

76

Good

P1

opportunistic routine speed rest line closure

P2 P3 P4 P5 P6

urgent

line closure

known

P11

speed rest

known

P10
urgent 

known

P9
routine 

known

P8
opportunistic

known

P7

emergency 

tamp

routine tamp

good 

condition

number 

of tamps

P12 P13

P14

P15

Independent section solved using 

a Petri Net

• Many events don’t need to be 

in this model (26, 28, 30)

• Not clear how to include 

them in the analysis should 

the dependency model be 

reduced to just events 27 and 

29 



TOPTOP

TOPG17

TOPG8

TOPG9

TOPG13TOPG12

TOPG4TOPG3

TOPG14TOPG6

TOPG19

G20G24G1

G2

G16G15G5

G18G7

G11G10

421 7

3 4

2

12

5 6 18 19

8 116 24

15

13 14

259

22 23

TOPG2120 21

G25 G26

TOPG22

30

1
16 1017 10

G29

29

G23

TOPG28

G27

26 27

28

16

77

D1 D2

D3

1 1 3 2

2 3

5

4

Small model containing only 

the dependent events

Results integrated back into 

the assessment of the 

remainder of the FT

Maintenance dependency's 

can affect events which are 

not geographically close in 

the FT structure 



Dynamic and Dependent Tree Theory

D2T2

Modelling Requirements

78



Model Requirements
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Dependencies

• Model the dependencies and complexities using Petri Nets or 

Markov models

• Always use the simplest dependency model

Binary Decision Diagrams

• Dependencies are just required to be considered on each path

• Path numbers can be very high so every effort needs to be made 

to minimise these - indirectly by minimise the size of  the BDD 

• minimise the fault tree size using an effective modularisation

• effective variable ordering



Basic Structure of the Code
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Split into an 
integrated suite of 
PN and BDD codes

Petri net Analysis 

code

Petri Net 

files

Fault Tree 

file

Component 

Data file

Dependencies

file

Results
Top Event Probability

Top Event Intensity

Modularisation
Split the problem into an 

embedded sequence of 

independent modules 

consisting of:  PNs, 

Markov Models and BDDs

PN Modules
Generate  Petri Nets for 

component and 

dependency models

Extract the results from the 

complexity / dependency 

models  ready to insert into the 

BDD analysis

Create BDDs
Convert the independent 

FT modules to BDDs
BDD files BDD Analysis 

code

Markov  Modules
Generate  Markov 

Diagrams for component 

and dependency models

Markov files
Markov Analysis 

codeCausality information

Complexity 
information

Component failure and 

repair information

Dependency Models



Modularisation

Faunet Methods

81



Repeatedly Apply

82

• Contraction

Subsequent gates of the same type are contracted into a single gate

• Factorisation

Extracts factors expressed as groups of events that always occur together in the same  

gate type.  The factors can be any number of events if they satisfy the following:  

 All events in the group are independent and initiators 

 All events in the group are independent and enablers.

 All events in the group feature a dependency and contain all events in the same 

dependency group.

• Extraction

Restructure:



Quantification of Factors

83



Quantification of Factors

84



Top Event Quantification for 

Dependent Events

85



Basic Structure of the Code

86

Split into an 
integrated suite of 
PN and BDD codes

Petri net Analysis 

code

Petri Net 

files

Fault Tree 

file

Component 

Data file

Dependencies

file

Results
Top Event Probability

Top Event Intensity

Modularisation
Split the problem into an 

embedded sequence of 

independent modules 

consisting of:  PNs, 

Markov Models and BDDs

PN Modules
Generate  Petri Nets for 

component and 

dependency models

Extract the results from the 

complexity / dependency 

models  ready to insert into the 

BDD analysis

Create BDDs
Convert the independent 

FT modules to BDDs
BDD files BDD Analysis 

code

Markov  Modules
Generate  Markov 

Diagrams for component 

and dependency models

Markov files
Markov Analysis 

codeCausality information

Complexity 
information

Component failure and 

repair information

Dependency Models



Example

87

Dependency groups

D1 = { B, C }

D2 = { D, E }

C

A B A B D E

TOP
A

B

C

E

B

C

1 D

1 0

0

1 0

C

1 0

0

1 0 1

0

0



Top Event Probability
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𝑄𝑆𝑌𝑆 = ෍

𝑗=0

𝑛𝑝𝑎𝑡ℎ

𝑃 𝐼𝑝𝑎𝑡ℎ𝑗 . ෑ

𝑘=1

𝑛𝑑𝑒𝑝

𝑃(𝐷𝑝𝑎𝑡ℎ𝑗
𝑘)

A

B

C

E

B

C

1 D

1 0

0

1 0

C

1 0

0

1 0 1

0

0



Top Event Intensity
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𝐺𝑖 𝒒 = 𝑄𝑆𝑌𝑆 1𝑖 , 𝒒 − 𝑄𝑆𝑌𝑆 0𝑖 , 𝒒

𝑄𝑆𝑌𝑆 1𝑖 , 𝑞 = ෍

𝑥𝑖1∈𝑝𝑎𝑡ℎ𝑗

𝑃 𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖1 + ෍

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗

𝑃(𝑝𝑎𝑡ℎ𝑗|𝑥𝑖 = 1)

𝑄𝑆𝑌𝑆 0𝑖 , 𝑞 = ෍

𝑥𝑖0∈𝑝𝑎𝑡ℎ𝑗

𝑃 𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖0 + ෍

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗

𝑃(𝑝𝑎𝑡ℎ𝑗|𝑥𝑖 = 0)

𝑤𝑆𝑌𝑆(𝑡) = ෍
𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟𝑠

𝐺𝑖 𝒒 .𝑤𝑖 (𝑡)

Birnbaum’s Measure of Importance / Criticality Function

 

X 
i 

1 

1 

0 

0 

1 

1 

0 

0 

0 

0 1 0 

1 

1 

0 

0 

1 

1 

1 



Case Study Example

Plant Cooling System

90



Plant Cooling System - Features 
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M

R1

COMP

PRESSURE VESSEL

TANK 2
(T2)

TANK 1
(T1)

P1

P2

P3

HEAT EXCHANGER
(HX1)

HEAT EXCHANGER
(HX2) VALVE

(V1)

RELAY
(R1)

MOTOR
(M)

FAN
(F)

S1

S2

R2

Sub-Systems
Primary Cooling Water System

• Tank (T1), Pumps (P1,P2), Heat 

Exchanger (Hx1), Power Supply 

(PoW)

Detection System

• Sensors (S1,S2), Computer 

(Comp)

Secondary Cooling Water System

• Tank(T2), Pump (P3), Heat 

Exchanger (Hx2), Valve (V1), 

Relay (R2), Power Supply 

(PoW) 

Secondary Cooling Fan System 

• Fan (F), Motor (M), Relay (R1)
P1, P2, P3 and M – common power supply PoW



Plant Cooling System - Features 
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M

R1

COMP

PRESSURE VESSEL

TANK 2
(T2)

TANK 1
(T1)

P1

P2

P3

HEAT EXCHANGER
(HX1)

HEAT EXCHANGER
(HX2) VALVE

(V1)

RELAY
(R1)

MOTOR
(M)

FAN
(F)

S1

S2

R2

Complex Features
Non-constant failure / repair rates

• Motor M - Weibull failure time 

distribution and a lognormal 

repair time distribution

Dependencies

• Pumps P1 & P2 – if one fails it 

puts increased load (and 

increases the failure rate) of the 

other

• Heat Exchangers Hx1 & Hx2 -

when one needs replacement –

needs specialist equipment and 

both are replaced

• Pump P3 - two events P3S and 

P3R are clearly dependent



Complexity and Dependency Models
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• Motor M - Weibull failure time 

distribution and a lognormal 

repair time distribution

Dependencies 
• Pumps P1 & P2 – if one fails it 

puts increased load (and 

increases the failure rate) of the 

other

• Heat Exchangers Hx1 & Hx2 -

when one needs replacement –

needs specialist equipment and 

both are replaced

• Pump P3 - two events P3S and 

P3R are clearly dependent

Motor 
Working

Motor 
Failed

W(β,η) 

LN(μ,σ) λ1 λ2

λ1 λ2

P1F

P2F

P1F

P2W

P1W

P2W

P1W

P2F

0.5ν

ν

ν

1

2

3

4

Hx1 Working Hx1 FailedW(β,η) 

Hx2 Working

Hx2 Failed
unrevealed

W(β,η) 

Hx2 Failed
revealed

No 
inspection

θ

0.01

0.0

0.0

0.0

inspection

Hx1 Fails when 
Hx2 unrevealed

0.0

Non-constant failure / repair rates



Component 

Data
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Event 

Code 

Description I / E D-

Group 

Failure 

rate 

(/hour) 

Mean 

time to 

repair 

(hours) 

Inspect 

interval 

(hours) 

q w 

P1, 

P2 

Pumps fail 

when running 

I D1 Failure rate 𝜆1 = 2 × 10−5 /h under normal load               

                 𝜆2 = 5 × 10−3/h under full load 

Repair rate ν= 0.041667  (MTTF = 24hrs) 

 

T1 Water Supply 

failure 

I  1x10-5 24  2.4x10-5 9.99976 

x10-6 

Hx1 Heat 

Exchanger 

fails 

I D2 Failure time = W(β=2.5, η=30,000h) 

The system is shut down when the repair is 

undertaken 

PoW Power supply 

failure 

I  1x10-4 10  1x10-3 9.99 

x10-5 

S1, 

S2 

Sensor fails 

to detect a 

high 

temperature 

E  5x10-4 5 730 0.185  

Comp Computer 

fails to 

process 

sensor signals 

E  5x10-5 5 2190 0.055  

R1 / 

R2 

Relay 

contacts fail 

to close  

E  1x10-5 24 2190 0.0112  

Fan Fan fails E  2x10-6 8 2190 2.206 

x10-3 

 

Motor Fan motor 

fails 

E C1 Failure time = W(β=1.5, η=12,000h) 

Repair time = LogN(μ=24hrs, σ=4.8h)  

P3S Pump fails to 

activate 

E D3     0.05  

P3R Pump fails 

when running 

E D3 1x10-4     

T2 Water Supply 

failure 

E  1x10-5 24 2190 0.0112  

Hx2 Heat 

Exchanger 

fails 

E D2 Failure time = W(β=2.5, η=30,000h) 

The system is shut down when the repair is 

undertaken 

V1 Valve fails to 

open 

E  5x10-5 30 2190 0.05625  

 



Fault Tree Structure
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Pressure Vessel 
Cooling Fails

AND

Primary Cooling 
System Fails

Auxiliary Cooling 
System Fails

OR

T1 Hx1

OROR

PoWAND

P1 P2

OR

High Temperature
Detection System Fails

Secondary Cooling 
System Fails

Fan
System Fails

OR

AND

S1 S2

Comp

OR OR

R1 Fan Motor PoW PoW R2 P3S T2Hx2P3R V1



Modularisation (1)
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Pressure Vessel 
Cooling Fails

AND

Primary Cooling 
System Fails

OR

T1 Hx1PoWAND

P1 P2

Auxiliary Cooling 
System Fails

OR

AND

S1 S2

Comp R1 Fan Motor PoW R2 P3S T2Hx2P3R V1

Contraction 1

Pressure Vessel 
Cooling Fails

AND

Primary Cooling 
System Fails

Auxiliary Cooling 
System Fails

OR

T1 Hx1

OROR

PoWAND

P1 P2

OR

High Temperature
Detection System Fails

Secondary Cooling 
System Fails

Fan
System Fails

OR

AND

S1 S2

Comp

OR OR

R1 Fan Motor PoW PoW R2 P3S T2Hx2P3R V1



Modularisation (2)
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Pressure Vessel 
Cooling Fails

AND

Primary Cooling 
System Fails

OR

T1 Hx1PoWAND

P1 P2

Auxiliary Cooling 
System Fails

OR

AND

S1 S2

Comp R1 Fan Motor PoW R2 P3S T2Hx2P3R V1

Factorisation 1

Pressure Vessel 
Cooling Fails

AND

OR

Hx1PoW

OR

Cf2 Cf3 Cf4 PoWCf1 T1 Hx2



Modularisation (3)
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Extraction 1

Pressure Vessel 
Cooling Fails

AND

OR

Hx1PoW

OR

Cf2 Cf3 Cf4 PoWCf1 T1 Hx2

Pressure Vessel 
Cooling Fails

AND

OR

Hx1

PoW

OR

Cf2 Cf3 Cf4Cf1 T1 Hx2

OR

Contraction 2    - No Change



Modularisation (4)
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Factorisation 2

Pressure Vessel 
Cooling Fails

AND

OR

Hx1

PoW

OR

Cf2 Cf3 Cf4Cf1 T1 Hx2

OR

Pressure Vessel 
Cooling Fails

AND (G1)

OR

Hx1

PoW

OR

Cf6Cf5 Hx2

OR

Simplest possible Faunet representation



Modularisation (5)
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Pressure Vessel 
Cooling Fails

AND (G1)

OR

Hx1

PoW

OR

Cf6Cf5 Hx2

OR

Applying the Rauzy & Dutuit algorithm gives independent section Top and G1

AND

OR

Hx1

OR

Cf6Cf5 Hx2

G1Pressure Vessel 
Cooling Fails

G1PoW

OR



Top Event Probability
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𝑄𝐶𝑓𝑖 = 1 −ෑ

𝑗=1

𝑛

1 − 𝑞𝑥𝑗

Direct from component results

From factor 

calculations

From factor calculations

From dependency model

From dependency model

Note - Motor from 

complexity model

From factor calculations

Event 

Code 

Description I / E D-

Group 

q 

Cf1  P1. P2 I  D1  0.00170988 

Cf2  S1. S2  E   0.00034225 

Cf3 Comp +

R1 + Fan +

Motor +

R2 + T2 +

V1  

E   0.6035094 

Cf4 P3S + P3R E  D3 0.05285 

Cf5 Cf1 + T1 E   0.0017338 

Cf6 Cf2 + Cf3

+ Cf4 

E   0.6246519 

G1 BDD I 
 

0.001091749 

Cf7 PoW + G1     0.0020906577 
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Pressure Vessel 
Cooling Fails

AND (G1)

OR

Hx1

PoW

OR

Cf6Cf5 Hx2

OR

Cf5

Cf6

Hx2

1 0

Hx1

Variable Ordering 

Cf5 < Hx1 < Cf6 < Hx2
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Cf5

Cf6

Hx2

1 0

Hx1

j pathj Ipathj

1 Cf51 , Cf61 Cf51 , Cf61 

2 Cf51 , Cf60  , Hx21 Cf51 , Cf60 Hx21

3 Cf50 , Hx11 , Cf61 Cf50 ,Cf61 Hx11

4 Cf50 , Hx11 , Cf60 , Hx21 Cf50 , Cf60 Hx11 , Hx21

𝑄𝑆𝑌𝑆 = ෍

𝑗=0

𝑛𝑝𝑎𝑡ℎ

𝑃 𝐼𝑝𝑎𝑡ℎ𝑗 . ෑ

𝑘=1

𝑛𝑑𝑒𝑝

𝑃(𝐷𝑝𝑎𝑡ℎ𝑗
𝑘)

𝑄𝑝𝑎𝑡ℎ1 = 𝑃 𝐶𝑓51 . 𝑃 𝐶𝑓61 = 0.0010830 

𝑄𝑝𝑎𝑡ℎ2 = 𝑃 𝐶𝑓51 . (1 − 𝑃 𝐶𝑓61) . 𝑃(𝐻𝑥21) = 8.8052957e-06 

𝑄𝑝𝑎𝑡ℎ3 = (1 − 𝑃 𝐶𝑓51) . 𝑃 𝐶𝑓61 . 𝑃(𝐻𝑥11) = 0.0

𝑄𝑝𝑎𝑡ℎ4 = (1 − 𝑃 𝐶𝑓51) . (1 − 𝑃 𝐶𝑓61) . 𝑃(𝐻𝑥11, 𝐻𝑥21) = 0.0

𝑄𝐺1 = 0.00109175 
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𝑄𝐶𝑓𝑖 = 1 −ෑ

𝑗=1

𝑛

1 − 𝑞𝑥𝑗

Top Event Probability = 0.0020906577

Event 

Code 

Description I / E D-

Group 

q 

Cf1  P1. P2 I  D1  0.00170988 

Cf2  S1. S2  E   0.00034225 

Cf3 Comp +

R1 + Fan +
Motor +

R2 + T2 +

V1  

E   0.6035094 

Cf4 P3S + P3R E  D3 0.05285 

Cf5 Cf1 + T1 E   0.0017338 

Cf6 Cf2 + Cf3

+ Cf4 

E   0.6246519 

G1 BDD I 
 

0.001091749 

Cf7 PoW + G1     0.0020906577 
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Cf5

Cf6

Hx2

1 0

Hx1

𝐺𝑖 𝒒 = 𝑄𝑆𝑌𝑆 1𝑖 , 𝒒 − 𝑄𝑆𝑌𝑆 0𝑖 , 𝒒

𝑄𝑆𝑌𝑆 1𝑖 , 𝑞 = ෍

𝑥𝑖1∈𝑝𝑎𝑡ℎ𝑗

𝑃 𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖1 + ෍

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗

𝑃(𝑝𝑎𝑡ℎ𝑗|𝑥𝑖 = 1)

𝑄𝑆𝑌𝑆 0𝑖 , 𝑞 = ෍

𝑥𝑖0∈𝑝𝑎𝑡ℎ𝑗

𝑃 𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖0 + ෍

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗

𝑃(𝑝𝑎𝑡ℎ𝑗|𝑥𝑖 = 0)

𝑤𝑆𝑌𝑆(𝑡) = ෍
𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟𝑠

𝐺𝑖 𝒒 .𝑤𝑖 (𝑡)

Birnbaum’s Measure of Importance / Criticality Function

Initiators:  

T1, Hx1, P1, P2, PoW
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Variable Q(var=F) Q(var=W) Gi(var) Gi (var) w

Hx1 1.152147238 x 10-5

T1 0.6300421 0.0020756 0.6279665 6.2795143 x 10-6

P1 0.5042367 0.1268205 0.3774162 8.3356331 x 10-6

P2 0.5042367 0.1268205 0.3774162 8.3356331 x 10-6

PoW 1.0 0.0010918 0.9989082 9.979093 x 10-5

Top Events Failure Intensity

𝑤𝑆𝑌𝑆(𝑡) =1.342632 x 10-4 / hour
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 Dynamic and Dependent Tree Theory, D2T2, enables the 

evaluation of fault trees which are not limited by the restrictions 

which apply to conventional fault trees solved by Kinetic Tree 

Theory.

 The analysis algorithm utilises BDDs, Petri Nets and Markov 

Models.

 Retains the familiar and popular fault tree causality structure.

 The Petri net and Markov models dedicated to solve the 

complexities and dependencies are minimal in size. 

 Modularisation of the fault tree minimises the size of the BDD 

utilised in the system evaluation (and therefore the number of 

paths).



108

The End

Any Questions?
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