
Next Generation Fault Tree Analysis

Methods

(D2T2 - Dynamic and Dependent Tree Theory)

John Andrews

Silvia Tolo

2

Content

• Review of Fault Tree Analysis

Binary Decision Diagrams

• Dependencies and Complexities in Engineering Systems

• Modelling Dependencies

Markov Models

Petri Nets

Characteristics of the methods

• NxGen Requirements

Code structure

• Modularisation Methods

• D2T2 Dynamic and Dependent Fault Tree Analysis

• Case Study

Plant Cooling System

• Summary / Conclusions

Review of Fault Tree Analysis

3

Fault Tree Analysis

4

Pump 2 fails
No water to the

pump

P2

No water to V5V5 fails closed

V5

No water from

pump 2

No water from

V3

No water from

V4

V4 fails closed

V4

No water to V4

R2

No water to V3

from reservoir 1

V1 fails closed

V1

No water to V1

R1

V3 fails closed

V3

1 Component failure models
• Limited maintenance process detail

No Repair:

Revealed:

Unrevealed:

• Constant failure and repair rates

• Snap-shot in time

tetFtQ  1)()(

 tetQ)(1)(



 












 




2
AVQ

Independent basic events

The Fundamental Elements:

Efficient FTA
Binary Decision Diagrams

5

6

Binary Decision Diagrams (BDDs)

Root Vertex

Event A fails

Event A works

Intermediate vertices

(Basic Events)

Terminal-1

(Top Event occurs)

Terminal-0

(Top Event non-

occurrence)

Ordering of Basic Events: A < B < C

A

B

C
1

1 0

1

1

0

1

0

0

Binary Decision Diagram

7

ORDERING A < B < C
Top Event

C

Gate 1 Gate 2

A B C

A

B

C
1

1 0

1

1

0

1

0

0

Min Cut Sets: {C}, { A, B}

Top Event Probability

+ OR

. AND

• Exact

• Fast

• Efficient

A

B

C
1

1 0

1

1

0

1

0

0

No need to derive the Min Cut

Sets as an intermediate step

8

Fault Tree to BDD Conversion

9

Basic Event Ordering: A < B < C
Top Event

C

Gate 1 Gate 2

A B C

Generate the Logic Equation

represented by the Fault Tree

TOP = Gate1 . Gate2

= (A + C) . (B + C)

BDD Construction From Logic Equation

10

A

(A+C).(B+C)

BDD Construction From Logic Equation

11

A

(A+C).(B+C)

(B+C)

1

BDD Construction From Logic Equation

12

A

(A+C).(B+C)

(B+C) C.(B+C)

1 0

BDD Construction From Logic Equation

13

A

(A+C).(B+C)

(B+C) C.(B+C)

C

B B

1

1

1 0

0

BDD Construction From Logic Equation

14

A

(A+C).(B+C)

(B+C) C.(B+C)

C

B B

C C1

1

1 10 0

0

BDD Construction From Logic Equation

15

Irrelevant NodeA

(A+C).(B+C)

(B+C) C.(B+C)

C

B

C

B

C C1

1 0

1

1 1

1 0

0 0

0

B

C

1 0

A

1

1

0

0

0

1

1

16

if-then-else (ite) Notation

For node A

if A (=1) then

consider function f1=B+C

else

consider function f2=C.(B+C)

ite notation

TOP = ite(A, f1, f2)

A

(A+C).(B+C)

(B+C) C.(B+C)

C

B

C

B

C C1

1 0

1

1 1

1 0

0 0

0

17

if-then-else (ite) BDD Definition

Defining each node as an ite structure

TOP=ite(A, f1, f2)

f1=ite(B, 1, f2)

f2=ite(C, 1, 0)

TOP=ite(A, ite(B, 1, f2) , f2)

TOP=ite(A, ite(B, 1, ite(C, 1, 0)) , ite(C, 1, 0))

B

C

1 0

A

1

1

0

0

0

1

1

18

BDD Generation Using ite Rules

- Define all Basic Events

e.g. A = ite(A, 1, 0)

- If G=ite(X, g1, g2) and H=ite(Y, h1, h2)

then:

ite(X, g1  H, g2  H) if X<Y

G  H=

ite (X, g1  h1, g2  h2) if X=Y

 = AND

or OR

- Apply bottom-up to each gate in the fault tree

- Use simplification rules

G + 1 = 1 G + 0 = G

G . 1 = G G . 0 = 0

ite(X, f1, f1) = f1

19

Example

TOP

GATE 1 GATE 2

A C B C

Ordering A < B < C

Basic Events:

A=ite(A, 1, 0)

B=ite(B, 1, 0)

C=ite(C, 1, 0)

GATE1 = A + C

= ite(A,1 ,0)+ ite(C,1 ,0)

= ite(A, 1+ ite(C,1 ,0) , 0+ite(C,1 ,0))

= ite(A, 1, ite(C,1 ,0))

i𝑓 𝐺 = 𝑖𝑡𝑒 𝑋, 𝑔1, 𝑔2
𝐻 = 𝑖𝑡𝑒 𝑌, ℎ1, ℎ2

then:

𝐺 ⊕𝐻 = ቊ
𝑖𝑡𝑒 𝑋, 𝑔1⊕𝐻, 𝑔2⊕𝐻 𝑖𝑓 𝑋 < 𝑌

𝑖𝑡𝑒 𝑋, 𝑔1⊕ ℎ1, 𝑔2⊕ ℎ2 𝑖𝑓 𝑋 = 𝑌

20

Example

TOP

GATE 1 GATE 2

A C B C

GATE1 = B + C

= ite(B,1 ,0) + ite(C,1 ,0)

= ite(B, 1+ ite(C,1 ,0) , 0+ite(C,1 ,0))

= ite(B, 1, ite(C,1 ,0))

i𝑓 𝐺 = 𝑖𝑡𝑒 𝑋, 𝑔1, 𝑔2
𝐻 = 𝑖𝑡𝑒 𝑌, ℎ1, ℎ2

then:

𝐺 ⊕𝐻 = ቊ
𝑖𝑡𝑒 𝑋, 𝑔1⊕𝐻, 𝑔2⊕𝐻 𝑖𝑓 𝑋 < 𝑌

𝑖𝑡𝑒 𝑋, 𝑔1⊕ ℎ1, 𝑔2⊕ ℎ2 𝑖𝑓 𝑋 = 𝑌

21

Example

TOP

GATE 1 GATE 2

A C B C

TOP = GATE1 . GATE2

= ite(A, 1, ite(C,1 ,0)).ite(B, 1, ite(C,1 ,0))

= ite(A, 1. ite(B, 1, ite(C,1 ,0) ,

ite(C,1 ,0) .ite(B, 1, ite(C,1 ,0))

= ite(A, ite(B, 1, ite(C,1 ,0) ,

ite(B, 1. ite(C,1 ,0) , ite(C,1 ,0). ite(C,1 ,0))

= ite(A, ite(B, 1, ite(C,1 ,0) ,

ite(B, ite(C,1 ,0) , ite(C,1 ,0))

= ite(A, ite(B, 1, ite(C,1 ,0) , ite(C,1 ,0))

i𝑓 𝐺 = 𝑖𝑡𝑒 𝑋, 𝑔1, 𝑔2
𝐻 = 𝑖𝑡𝑒 𝑌, ℎ1, ℎ2

then:

𝐺 ⊕𝐻 = ቊ
𝑖𝑡𝑒 𝑋, 𝑔1⊕𝐻, 𝑔2⊕𝐻 𝑖𝑓 𝑋 < 𝑌

𝑖𝑡𝑒 𝑋, 𝑔1⊕ ℎ1, 𝑔2⊕ ℎ2 𝑖𝑓 𝑋 = 𝑌

22

Example - cont

TOP = ite(A, ite(B, 1, ite(C, 1 ,0) ,

ite(C, 1 ,0))

B

C

1 0

A

1

1

0

0

0

1

1

23

Example - cont

TOP = ite(A, ite(B, 1, ite(C, 1 ,0) ,

ite(C, 1 ,0))

B

C

1 0

A

1

1

0

0

0

1

1

24

Minimal Cut Sets

A.B

A.C

C

The paths deliver Cut Sets:

The list of component

failed states which result in

system failure.

The BDD can be processed

to deliver a BDD (Zero-

suppressed BDD) which

encodes only the Minimal

Cut Sets:

The list of component

failures which is necessary

and sufficient to cause

system failure.

Causes of Failure

B

C

1 0

A

1

1

0

0

0

1

1

B

C

1 0

A

1

1

0

0

1

1

0

0

A.B

C

Variable Ordering Methods

25

Ordering Example

26

Top Event

Gate 2

A B C B D

Gate 1

D

A

1

0

B

1

1
0

0

0
1

1

C

1

0
1

0
TOP = (A + B + C) . (B + D)

= B + A.D + C.D

Ordering: B < D < A < C

• 3 paths through the BDD

• 3 minimal cut sets

Ordering Example

27

Top Event

Gate 2

A B C B D

Gate 1

TOP = (A + B + C) . (B + D)

= B + A.D + C.D

Ordering: C < A < D < C

• 5 paths through the BDD

• 3 minimal cut sets

C

D

1

0

A

1
0

0

0

1

1

B

1

0
1

0

D

B1
1

1

1 0

0

0

B
1

1

0

28

Variable Ordering

• Ordering scheme selected can have a dramatic

effect on the analysis.

• Good gives an efficient analysis

• Bad can make problem intractable

• A common approach is a systematic traversal of

the fault tree structure such as:

• Top-down, left-right

29

Ordering Heuristics

TOP-DOWN, LEFT-RIGHT:

TOP EVENT

GATE 1

GATE 7GATE 6

GATE 3 GATE 5GATE 4

GATE 2A

AE

GFGK

H

B C

D

LEVEL 1

LEVEL 4

LEVEL 3

LEVEL 2

A

B, C

H, E, D

K, G, F

A<B<C<H<E<D<K<G<F

30

Variable Ordering Schemes

• Many other ordering schemes can be used

• Alternatives to these ‘neighbourhood’ methods are

based on ‘structural importance’.

• ‘Structural importance’ methods allow nodes to be

selected from anywhere in the tree structure. Nodes are

allocated a ‘weighting’ which indicates their

contribution to the top event. Highest ‘weightings’

ordered first.

• Neural Network selection methods.

System Failure Frequency

31

The Criticality Function, Gi(q), is the probability that the system is in a critical

state for component i such that the failure of component i causes system failure.

wi(t) is the failure intensity of component i.

probability that the system fails with component i failed

probability that the system fails with component i working

𝑄𝑆𝑌𝑆 1𝑖 , 𝒒

𝑄𝑆𝑌𝑆 0𝑖 , 𝒒

𝐺𝑖 𝒒 =
𝜕𝑄𝑆𝑌𝑆
𝜕𝑞𝑖

= 𝑄𝑆𝑌𝑆 1𝑖 , 𝒒 − 𝑄𝑆𝑌𝑆 0𝑖 , 𝒒

𝑤𝑆𝑌𝑆(𝑡) = ෍
𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟𝑠

𝐺𝑖 𝒒 .𝑤𝑖 (𝑡)

Dependencies and Complexities in
Engineering Systems

32

Complexity – non-constant rates

33

Motor
Working

Motor
Failed

W(β,η)

LN(μ,σ)

Non-constant Failure / Repair Rates

Failure Time Distribution

• Component experiences wear-out

• Systems operating beyond their

design life

• Weibull failure time distributions

are common

Repair Time Distribution

• Repair is not a random process

• Lognormal repair time

distributions are common

Hot Standby

Both pumps are

operational but the

fluid is just driven by

P1. On failure of P1,

the fluid now passes

through P2

P1 & P2 Independent

Dependency - Standby

34

P1

P2

Standby System
• Pump P1 operational.

• When P1 fails P2 takes over the duty

Warm Standby

Pump P2 is not

operational in standby.

It becomes operational

when P1 fails. It can

fail in standby but

with a lower rate than

when operational.

P1 & P2 Dependent

Cold Standby

Pump P2 is not

operational in standby.

It becomes operational

when P1 fails. It

cannot fail in standby.

P1 & P2 Dependent

Dependency Examples

35

Type Description Example

Secondary

Failure

When one component fails it increases the load on a

second component which then experiences an

increased failure rate

Two pumps both operational and

sharing the load. Each pump has

the capability to deliver the full

demand should the other pump

fail

Opportunistic

Maintenance

A component fails which causes a system shutdown

or the requires specialist equipment for the repair.

The opportunity is taken to do work on a second

component which has not failed but is in a degraded

state

Components on a circuit board.

Components in a sub-sea

production module

Common

Cause

When one characteristic (eg materials, manufacturing,

location, operation, installation maintenance) causes

the degraded performance in several components

Incorrect maintenance done on

several identical sensors

Impact breaks the circuit on

cables routed in the same way to

different redundant channels

Queueing Failed components all needing the same maintenance

resource are queued. Then repaired in priority order

Limited number of maintenance

teams, equipment or spares

Modelling
Dependencies and Complexities in

Engineering Systems

36

Outputs

• The probability of being

in each state at time t.

Solution

• Numerical Methods

Markov Analysis

37

λ1 λ2

λ1 λ2

P1F

P2F

P1F

P2W

P1W

P2W

P1F

P2W

0.5ν

ν

ν

1

2

3

4

Characteristics

• State – based method

• States represent the system states

• Memoryless property

• Exponential distribution for state

residence times (constant transition

rates)

𝑃 𝑋𝑡+𝑑𝑡 = 𝑘 𝑋𝑡= 𝑗, 𝑋𝑡−𝑑𝑡 = 𝑖, 𝑋𝑡−2𝑑𝑡 = ℎ,… , 𝑋0 = 𝑎

= 𝑃 𝑋𝑡+𝑑𝑡 = 𝑘 𝑋𝑡 = 𝑗

(ሶ𝑃1, ሶ𝑃2, ሶ𝑃3, … , ሶ𝑃𝑛) = (𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛)

−λ1,1 ⋯ λ1,𝑛
⋮ ⋱ ⋮

λ𝑛,1 ⋯ −λ𝑛,𝑛

Model Development - Markov State Transition Diagram

• Identify all possible states.

• List all transitions between states (failures/repairs).

Model Analysis

• Develop one equation for each state on the diagram (state

equations).

• Solve equations to find probability of being in each state.

Markov Modelling Procedure

38

States:

Working (W)

Failed (F)

Transitions:

Failure (W F)

Repair (F W)

Outputs:

PF(t) = probability of component failed at time t

PW(t) = probability of component working at time t

unavailability

availability

Single Component Failure Model

λ

W

ν

1 2

F

39

Derive the Transition Rate Matrix

λ

W

ν

1 2

F

Rate of change of state i probability =

- (rate of leaving state i) x P(residing in state i)

+෍
𝑗=1
𝑗≠𝑖

𝑛

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑎𝑟𝑟𝑖𝑣𝑖𝑛𝑔 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑗 × 𝑃(𝑟𝑒𝑠𝑖𝑑𝑖𝑛𝑔 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 𝑗)

𝑑𝑃𝑊(𝑡)

𝑑𝑡
= −λ𝑃𝑊 𝑡 + ν𝑃𝐹(𝑡)

𝑑𝑃𝐹(𝑡)

𝑑𝑡
= λ𝑃𝑊 𝑡 − ν𝑃𝐹(𝑡)

40

Denote:

Derive the Transition Rate Matrix (A)

41

𝑑𝑃𝑊(𝑡)

𝑑𝑡
= −λ𝑃𝑊 𝑡 + ν𝑃𝐹(𝑡)

𝑑𝑃𝐹(𝑡)

𝑑𝑡
= λ𝑃𝑊 𝑡 − ν𝑃𝐹(𝑡)

𝑑𝑃𝑊(𝑡)

𝑑𝑡
𝑏𝑦 ሶ𝑃𝑊

𝑑𝑃𝐹(𝑡)

𝑑𝑡
𝑏𝑦 ሶ𝑃𝐹

ሶ𝑃𝑊 𝑡 ሶ𝑃𝐹 𝑡 = 𝑃𝑊 𝑃𝐹 .
−λ λ
ν −ν

ሶ𝑷 = 𝑷. [𝑨]

𝑨 =
−λ λ
ν −ν

Therefore in Matrix form:

Rules:

• The dimension of the matrix is equal to the number of states.

• Element i, j (ith row, jth col) represents the transition rate from

state i to state j.

• A diagonal element i,i is the total transition rate out of state i

(always negative). (All rows sum to zero).

Transition Rate Matrix

42

W

1 2

F 𝑨 =
−λ λ
ν −ν

λ

ν

B

B

A

B

B A

A – F

B – W

2

A – W

B – F

3

A – W

B – W

1

A – F

B – F

4

A

A

Two component parallel system

(availability model)

B

B

A

B

B A

A – F

B – W

2

A – W

B – F

3

A – W

B – W

1

A – F

B – F

4

A

A

System failed

Example – 2 Component System

43

Two component series system

(availability model)

𝑄𝑆𝑌𝑆 = 𝑃4

System failed

𝑄𝑆𝑌𝑆 = 𝑃2+ 𝑃3+ 𝑃4

1

2


21

fr
o

m
:

to:

3

4

43

Transition rate matrix:

B 0

0 B

(A  B) A

A (B  A)

(A  B) AB 0

A (A  B)0 B

[A]

Example –Availability Model

44

B

B

A

B

B A

A – F

B – W

2

A – W

B – F

3

A – W

B – W

1

A – F

B – F

4

A

A

Dependency Example

45

λ1 λ2

λ1 λ2

P1F

P2F

P1F

P2W

P1W

P2W

P1F

P2W

0.5ν

ν

ν

1

2

3

4

Pumps P1 and P2 operate together to provide a flow. Should one pump fail then the second can

deliver the required flow on its own. However, when one fails it puts an extra load on the other and

increases its failure rate from λ1 to λ2.

Pump Failure:

λ1 = 2.0 x 10-5 per hour Normal Load

λ2 = 5.0 x 10-3 per hour Full Load

Pump Repair:

ν = 0.041667 (MTTF = 24hrs)

ν2 = 0.5 ν.

State

Number

State State

Probability

Intensity Expression State Intensity

1 0.99743518

2 0.00042747

3 0.00042747

4 0.00170988

The Fundamental Elements:
Petri Nets

46

Petri Net Basics and Definitions

47

D1 D2

D3

1 1 3 2

2 3

5

4

Places
Conditions, available

resources, counters

Tokens
Mark places

Represent the current

status of the system

Dj

Transitions
• Time delay Dj at

which transitions

occur

• Immediate Dj = 0

• Timed Dj >0

Edges
• Input edges

- place to transition

• Output edges

- transition to place

D1 D2

D3

1 1 3 2

2 3

5

4

If all input places of a transition are
marked by at least one token then
this transition is called enabled.

After a delay D  0 the transition
fires.

• removes one token from each of its
input places

• adds one token to each of its output
places.

Petri Net Modelling

48

D1 D2

D3

1 1 3 2

2 3

5

4

After D1

Multigraph Weighted Edge

Dj

2

1

3

4

5

Dj

2
2

3

2

1

3

4

5

Weighted Edges

49

Blocks a transition when the input place is marked.

0 0

0

transition fires

transition does

not fire
0

1

1

1

1

Inhibit Edges

50

Characteristics
• Any distribution of times to transition

• Capable of modelling very complex maintenance

strategies

• Concise structure

Outputs
• Produces distributions of:

• duration in any state

• no of incidences of entering any

state

Solution
• Monte Carlo Simulation

Petri Net Modelling

51

D1 D2

D3

1 1 3 2

2 3

5

4

Dependency Example

52

Hx1 Working Hx1 Failed
W(β,η)

Hx2 Working

0.0

Opportunistic Maintenance Dependency
Heat Exchangers Hx1 & Hx2

- when either heat exchanger fails it needs

intrusive maintenance requiring specialist

equipment

- both are of the same age and operate in the

same environment

- the second will fail in the not too distant

future

- repair both at the same time

- Hx1 – initiator, Hx2 - enabler

Dependency Example

53

Hx1 Working Hx1 Failed
W(β,η)

Hx2 Workng

Hx2 Failed

unrevealed

W(β,η)

No

inspection

θ

0.01

0.0

0.0

0.0

inspection

Hx2 Failed

revealed

Dependency Example

54

Hx1 Working Hx1 Failed
W(β,η)

Hx2 Workng

Hx2 Failed

unrevealed

W(β,η)

Hx2 Failed

revealed

No

inspection

θ

0.01

0.0

0.0

0.0

inspection

Hx1 Fails when

Hx2 unrevealed

0.0

0.0

Monte Carlo Simulation

Petri Net Analysis - Simulation

55

• Inverse Transform Technique

• F(t) has the same range and properties as the U(0,1) distribution

• U(0,1) can be generated by Random Numbers (X).

time

F(t)

0
0

1.0

t

X

Sampling from Distributions

56

time

F(t)

0
0

1.0

t

X

Exponential Distribution

57

𝑓(𝑡) =
1

𝜇
𝑒
−
𝑡
𝜇 μ – mean time to failure

𝐹 𝑡 = 𝑋 = 1 − 𝑒
−
𝑡
𝜇

𝐹 𝑡 = න
0

𝑡

𝑓 𝑢 𝑑𝑢 = 1 − 𝑒
−
𝑡
𝜇

Generate a random, X

𝑡 = −𝜇ln(1 − 𝑋)

𝑡 = −𝜇ln(𝑋)

time

F(t)

0
0

1.0

t

X

Weibull Distribution

58

𝑓(𝑡) =
𝛽𝑡𝛽−1

𝜂𝛽
𝑒
−

𝑡
𝜂

𝛽

𝐹 𝑡 = 1 − 𝑒
−

𝑡
𝜂

𝛽

𝑡 ≥ 0, 𝛽 ≥ 1, 𝜂 ≥ 1

𝐹 𝑡 = 𝑋 = 1 − 𝑒
−

𝑡
𝜂

𝛽

𝑒
−

𝑡
𝜂

𝛽

= 1 − 𝑋

𝑡

𝜂

𝛽

= −𝑙𝑛(1 − 𝑋)

𝑡 = 𝜂 −𝑙𝑛(1 − 𝑋)
1
𝛽

𝑡 = 𝜂 −𝑙𝑛(𝑋)
1
𝛽

Generate a random number, X

D1 D2

D3

1 1 3 2

2 3

5

4

Generate random samples from

the transition distributions

Petri Net Simulation Example

59

Simulation

60

Generate random samples from

the transition distributions

10 20

5

1 1 3 2

2 3

5

4

61

Generate random samples from

the transition distributions

Transition 1 fires at time=10

(Generate next random sample

for t1 = 16)

10 20

5

1 1 3 2

2 3

5

4

Simulation

62

Generate random samples from

the transition distributions

Transition 1 fires at time=10

(Generate next random sample

for t1 = 16)

16 20

5

1 1 3 2

2 3

5

4

Simulation

63

Generate random samples from

the transition distributions

Transition 1 fires at time=10

(Generate next random sample

for t1 = 16)

Transition t2 and t3 enabled.
t3 fires at time = 15 (10+5)
Generate next random sample
for t3=21

16 20

5

1 1 3 2

2 3

5

4

Simulation

64

Generate random samples from

the transition distributions

Transition 1 fires at time=10

(Generate next random sample

for t1 = 16)

Transition t2 and t3 enabled.
t3 fires at time = 15
Generate next random sample
for t3=21

16 20

21

1 1 3 2

2 3

5

4

Simulation

65

Generate random samples from

the transition distributions

Transition 1 fires at time=10

(Generate next random sample

for t1 = 16)

Transition t2 and t3 enabled.
t3 fires at time = 15
Generate next random sample
for t3=21

Transition t1 enabled and fires at

time = 31 (15+16)

Generate next random sample

for t1 = 8

16 20

21

1 1 3 2

2 3

5

4

Simulation

66

Generate random samples from

the transition distributions

Transition 1 fires at time=10

(Generate next random sample

for t1 = 16)

Transition t2 and t3 enabled.
t3 fires at time = 15
Generate next random sample
for t3=21

Transition t1 enabled and fires at

time = 31

Generate next random sample

for t1 = 8

8 20

21

1 1 3 2

2 3

5

4

Simulation

67

Generate random samples from

the transition distributions

Transition 1 fires at time=10

(Generate next random sample

for t1 = 16)

Transition t2 and t3 enabled.
t3 fires at time = 15
Generate next random sample
for t3=21

Transition t1 enabled and fires at

time = 31

Generate next random sample

for t1 = 8

Transitions t2 and t3 enabled.

t2 fires at time=51 (31+20)

Generate next random sample

for t2=17

8 20

21

1 1 3 2

2 3

5

4

Simulation

68

Generate random samples from

the transition distributions

Transition 1 fires at time=10

(Generate next random sample

for t1 = 16)

Transition t2 and t3 enabled.
t3 fires at time = 15
Generate next random sample
for t3=21

Transition t1 enabled and fires at

time = 31

Generate next random sample

for t1 = 8

Transitions t2 and t3 enabled.

t2 fires at time=51 (31+21

Generate next random sample

for t2=17

8 17

21

1 1 3 2

2 3

5

4

Simulation

69

Generate random samples from

the transition distributions

Transition 1 fires at time=10

(Generate next random sample

for t1 = 16)

Transition t2 and t3 enabled.
t3 fires at time = 15
Generate next random sample
for t3=21

Transition t1 enabled and fires at

time = 31

Generate next random sample

for t1 = 8

Transitions t2 and t3 enabled.

t2 fires at time=51

Generate next random sample

for t2=17

Statistics of system performance

obtained by recording the time

duration in each place or the

number of transitions to each

place

8 17

21

1 1 3 2

2 3

5

4

Simulation

Complexity Example

70

Motor
Working

Motor
Failed

W(β,η)

LN(μ,σ)

STATE Probability Frequency (per

hour)

Motor

Failed

0.0058389642 8.686868 x 10-5

C1 = {MOTOR}

Failure time distribution

Weib(β=2.1,η=1200 hours)

Repair time distribution

LogN(μ=24.0 hours,σ=4.8 hours)

71

State Probabilities:

P(Hx1W, Hx2W)=0.98646987828725829

P(Hx1W, Hx2F)=0.0135301

P(Hx1F, Hx2F)=0.0

P(Hx1F)=0.0

P(Hx2F| Hx1F)=0.0

P(Hx2F| Hx1W)= 0.0135301

State Failure Intensities

w(Hx1F, Hx2_unrevealed)=3.1709792 x 10-07 /hour

w(Hx1F, Hx2W)=1.8161063 x 10-05 /hour

w(Hx1F)=1.8478161 x 10-05 /hour

Dependency Example

Hx1 Working Hx1 Failed
W(β,η)

Hx2 Workng

Hx2 Failed

unrevealed

W(β,η)

Hx2 Failed

revealed

No

inspection

θ

0.01

0.0

0.0

0.0

inspection

Hx1 Fails when

Hx2 unrevealed

0.0

0.0

Characteristics

72

Whole system modelling can be challenging:

Model Size

• Models can become large for full system analysis

• State-space explosion for Markov models

Model Solution Times

• Models solution can be computationally intensive

• Monte Carlo Simulation analysis for Petri Nets can have

long convergence times when systems are large or system

failures are rare

Auditability

• Lack the causality structure of Fault Trees

• Peer review and auditing difficult for regulators

FTA Approaches to Modelling
Complexities and Dependencies

73

74

TOPTOP

TOPG17

TOPG8

TOPG9

TOPG13TOPG12

TOPG4TOPG3

TOPG14TOPG6

TOPG19

G20G24G1

G2

G16G15G5

G18G7

G11G10

421 7

3 4

2

12

5 6 18 19

8 116 24

15

13 14

109

22 23

TOPG2120 21

G25 G26

TOPG22

2116 1017 10

G24

20

G23

TOPG17

G18

13 14

15

16

WARM SPARE

λ1 λ2

λ1 λ2

P1F

P2F

P1F

P2W

P1W

P2W

P1W

P2F

2ν

ν

ν

1

2

3

4

Dynamic Fault Trees

75

TOPTOP

TOPG17

TOPG8

TOPG9

TOPG13TOPG12

TOPG4TOPG3

TOPG14TOPG6

TOPG19

G20G24G1

G2

G16G15G5

G18G7

G11G10

421 7

3 4

2

12

5 6 18 19

8 116 24

15

13 14

259

22 23

TOPG2120 21

G25 G26

TOPG22

30

1
16 1017 10

G29

29

G23

TOPG28

G27

26 27

28

30

Independent Modules

Dependencies

between

27 and 29

TOPTOP

TOPG17

TOPG8

TOPG9

TOPG13TOPG12

TOPG4TOPG3

TOPG14TOPG6

TOPG19

G20G24G1

G2

G16G15G5

G18G7

G11G10

421 7

3 4

2

12

5 6 18 19

8 116 24

15

13 14

259

22 23

TOPG2120 21

G25 G26

TOPG22

30

1
16 1017 10

G29

29

G23

TOPG28

G27

26 27

28

30

76

Good

P1

opportunistic routine speed rest line closure

P2 P3 P4 P5 P6

urgent

line closure

known

P11

speed rest

known

P10
urgent

known

P9
routine

known

P8
opportunistic

known

P7

emergency

tamp

routine tamp

good

condition

number

of tamps

P12 P13

P14

P15

Independent section solved using

a Petri Net

• Many events don’t need to be

in this model (26, 28, 30)

• Not clear how to include

them in the analysis should

the dependency model be

reduced to just events 27 and

29

TOPTOP

TOPG17

TOPG8

TOPG9

TOPG13TOPG12

TOPG4TOPG3

TOPG14TOPG6

TOPG19

G20G24G1

G2

G16G15G5

G18G7

G11G10

421 7

3 4

2

12

5 6 18 19

8 116 24

15

13 14

259

22 23

TOPG2120 21

G25 G26

TOPG22

30

1
16 1017 10

G29

29

G23

TOPG28

G27

26 27

28

16

77

D1 D2

D3

1 1 3 2

2 3

5

4

Small model containing only

the dependent events

Results integrated back into

the assessment of the

remainder of the FT

Maintenance dependency's

can affect events which are

not geographically close in

the FT structure

Dynamic and Dependent Tree Theory

D2T2

Modelling Requirements

78

Model Requirements

79

Dependencies

• Model the dependencies and complexities using Petri Nets or

Markov models

• Always use the simplest dependency model

Binary Decision Diagrams

• Dependencies are just required to be considered on each path

• Path numbers can be very high so every effort needs to be made

to minimise these - indirectly by minimise the size of the BDD

• minimise the fault tree size using an effective modularisation

• effective variable ordering

Basic Structure of the Code

80

Split into an
integrated suite of
PN and BDD codes

Petri net Analysis

code

Petri Net

files

Fault Tree

file

Component

Data file

Dependencies

file

Results
Top Event Probability

Top Event Intensity

Modularisation
Split the problem into an

embedded sequence of

independent modules

consisting of: PNs,

Markov Models and BDDs

PN Modules
Generate Petri Nets for

component and

dependency models

Extract the results from the

complexity / dependency

models ready to insert into the

BDD analysis

Create BDDs
Convert the independent

FT modules to BDDs
BDD files BDD Analysis

code

Markov Modules
Generate Markov

Diagrams for component

and dependency models

Markov files
Markov Analysis

codeCausality information

Complexity
information

Component failure and

repair information

Dependency Models

Modularisation

Faunet Methods

81

Repeatedly Apply

82

• Contraction

Subsequent gates of the same type are contracted into a single gate

• Factorisation

Extracts factors expressed as groups of events that always occur together in the same

gate type. The factors can be any number of events if they satisfy the following:

 All events in the group are independent and initiators

 All events in the group are independent and enablers.

 All events in the group feature a dependency and contain all events in the same

dependency group.

• Extraction

Restructure:

Quantification of Factors

83

Quantification of Factors

84

Top Event Quantification for

Dependent Events

85

Basic Structure of the Code

86

Split into an
integrated suite of
PN and BDD codes

Petri net Analysis

code

Petri Net

files

Fault Tree

file

Component

Data file

Dependencies

file

Results
Top Event Probability

Top Event Intensity

Modularisation
Split the problem into an

embedded sequence of

independent modules

consisting of: PNs,

Markov Models and BDDs

PN Modules
Generate Petri Nets for

component and

dependency models

Extract the results from the

complexity / dependency

models ready to insert into the

BDD analysis

Create BDDs
Convert the independent

FT modules to BDDs
BDD files BDD Analysis

code

Markov Modules
Generate Markov

Diagrams for component

and dependency models

Markov files
Markov Analysis

codeCausality information

Complexity
information

Component failure and

repair information

Dependency Models

Example

87

Dependency groups

D1 = { B, C }

D2 = { D, E }

C

A B A B D E

TOP
A

B

C

E

B

C

1 D

1 0

0

1 0

C

1 0

0

1 0 1

0

0

Top Event Probability

88

𝑄𝑆𝑌𝑆 = ෍

𝑗=0

𝑛𝑝𝑎𝑡ℎ

𝑃 𝐼𝑝𝑎𝑡ℎ𝑗 . ෑ

𝑘=1

𝑛𝑑𝑒𝑝

𝑃(𝐷𝑝𝑎𝑡ℎ𝑗
𝑘)

A

B

C

E

B

C

1 D

1 0

0

1 0

C

1 0

0

1 0 1

0

0

Top Event Intensity

89

𝐺𝑖 𝒒 = 𝑄𝑆𝑌𝑆 1𝑖 , 𝒒 − 𝑄𝑆𝑌𝑆 0𝑖 , 𝒒

𝑄𝑆𝑌𝑆 1𝑖 , 𝑞 = ෍

𝑥𝑖1∈𝑝𝑎𝑡ℎ𝑗

𝑃 𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖1 + ෍

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗

𝑃(𝑝𝑎𝑡ℎ𝑗|𝑥𝑖 = 1)

𝑄𝑆𝑌𝑆 0𝑖 , 𝑞 = ෍

𝑥𝑖0∈𝑝𝑎𝑡ℎ𝑗

𝑃 𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖0 + ෍

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗

𝑃(𝑝𝑎𝑡ℎ𝑗|𝑥𝑖 = 0)

𝑤𝑆𝑌𝑆(𝑡) = ෍
𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟𝑠

𝐺𝑖 𝒒 .𝑤𝑖 (𝑡)

Birnbaum’s Measure of Importance / Criticality Function

X
i

1

1

0

0

1

1

0

0

0

0 1 0

1

1

0

0

1

1

1

Case Study Example

Plant Cooling System

90

Plant Cooling System - Features

91

M

R1

COMP

PRESSURE VESSEL

TANK 2
(T2)

TANK 1
(T1)

P1

P2

P3

HEAT EXCHANGER
(HX1)

HEAT EXCHANGER
(HX2) VALVE

(V1)

RELAY
(R1)

MOTOR
(M)

FAN
(F)

S1

S2

R2

Sub-Systems
Primary Cooling Water System

• Tank (T1), Pumps (P1,P2), Heat

Exchanger (Hx1), Power Supply

(PoW)

Detection System

• Sensors (S1,S2), Computer

(Comp)

Secondary Cooling Water System

• Tank(T2), Pump (P3), Heat

Exchanger (Hx2), Valve (V1),

Relay (R2), Power Supply

(PoW)

Secondary Cooling Fan System

• Fan (F), Motor (M), Relay (R1)
P1, P2, P3 and M – common power supply PoW

Plant Cooling System - Features

92

M

R1

COMP

PRESSURE VESSEL

TANK 2
(T2)

TANK 1
(T1)

P1

P2

P3

HEAT EXCHANGER
(HX1)

HEAT EXCHANGER
(HX2) VALVE

(V1)

RELAY
(R1)

MOTOR
(M)

FAN
(F)

S1

S2

R2

Complex Features
Non-constant failure / repair rates

• Motor M - Weibull failure time

distribution and a lognormal

repair time distribution

Dependencies

• Pumps P1 & P2 – if one fails it

puts increased load (and

increases the failure rate) of the

other

• Heat Exchangers Hx1 & Hx2 -

when one needs replacement –

needs specialist equipment and

both are replaced

• Pump P3 - two events P3S and

P3R are clearly dependent

Complexity and Dependency Models

93

• Motor M - Weibull failure time

distribution and a lognormal

repair time distribution

Dependencies
• Pumps P1 & P2 – if one fails it

puts increased load (and

increases the failure rate) of the

other

• Heat Exchangers Hx1 & Hx2 -

when one needs replacement –

needs specialist equipment and

both are replaced

• Pump P3 - two events P3S and

P3R are clearly dependent

Motor
Working

Motor
Failed

W(β,η)

LN(μ,σ) λ1 λ2

λ1 λ2

P1F

P2F

P1F

P2W

P1W

P2W

P1W

P2F

0.5ν

ν

ν

1

2

3

4

Hx1 Working Hx1 FailedW(β,η)

Hx2 Working

Hx2 Failed
unrevealed

W(β,η)

Hx2 Failed
revealed

No
inspection

θ

0.01

0.0

0.0

0.0

inspection

Hx1 Fails when
Hx2 unrevealed

0.0

Non-constant failure / repair rates

Component

Data

94

Event

Code

Description I / E D-

Group

Failure

rate

(/hour)

Mean

time to

repair

(hours)

Inspect

interval

(hours)

q w

P1,

P2

Pumps fail

when running

I D1 Failure rate 𝜆1 = 2 × 10−5 /h under normal load

 𝜆2 = 5 × 10−3/h under full load

Repair rate ν= 0.041667 (MTTF = 24hrs)

T1 Water Supply

failure

I 1x10-5 24 2.4x10-5 9.99976

x10-6

Hx1 Heat

Exchanger

fails

I D2 Failure time = W(β=2.5, η=30,000h)

The system is shut down when the repair is

undertaken

PoW Power supply

failure

I 1x10-4 10 1x10-3 9.99

x10-5

S1,

S2

Sensor fails

to detect a

high

temperature

E 5x10-4 5 730 0.185

Comp Computer

fails to

process

sensor signals

E 5x10-5 5 2190 0.055

R1 /

R2

Relay

contacts fail

to close

E 1x10-5 24 2190 0.0112

Fan Fan fails E 2x10-6 8 2190 2.206

x10-3

Motor Fan motor

fails

E C1 Failure time = W(β=1.5, η=12,000h)

Repair time = LogN(μ=24hrs, σ=4.8h)

P3S Pump fails to

activate

E D3 0.05

P3R Pump fails

when running

E D3 1x10-4

T2 Water Supply

failure

E 1x10-5 24 2190 0.0112

Hx2 Heat

Exchanger

fails

E D2 Failure time = W(β=2.5, η=30,000h)

The system is shut down when the repair is

undertaken

V1 Valve fails to

open

E 5x10-5 30 2190 0.05625

Fault Tree Structure

95

Pressure Vessel
Cooling Fails

AND

Primary Cooling
System Fails

Auxiliary Cooling
System Fails

OR

T1 Hx1

OROR

PoWAND

P1 P2

OR

High Temperature
Detection System Fails

Secondary Cooling
System Fails

Fan
System Fails

OR

AND

S1 S2

Comp

OR OR

R1 Fan Motor PoW PoW R2 P3S T2Hx2P3R V1

Modularisation (1)

96

Pressure Vessel
Cooling Fails

AND

Primary Cooling
System Fails

OR

T1 Hx1PoWAND

P1 P2

Auxiliary Cooling
System Fails

OR

AND

S1 S2

Comp R1 Fan Motor PoW R2 P3S T2Hx2P3R V1

Contraction 1

Pressure Vessel
Cooling Fails

AND

Primary Cooling
System Fails

Auxiliary Cooling
System Fails

OR

T1 Hx1

OROR

PoWAND

P1 P2

OR

High Temperature
Detection System Fails

Secondary Cooling
System Fails

Fan
System Fails

OR

AND

S1 S2

Comp

OR OR

R1 Fan Motor PoW PoW R2 P3S T2Hx2P3R V1

Modularisation (2)

97

Pressure Vessel
Cooling Fails

AND

Primary Cooling
System Fails

OR

T1 Hx1PoWAND

P1 P2

Auxiliary Cooling
System Fails

OR

AND

S1 S2

Comp R1 Fan Motor PoW R2 P3S T2Hx2P3R V1

Factorisation 1

Pressure Vessel
Cooling Fails

AND

OR

Hx1PoW

OR

Cf2 Cf3 Cf4 PoWCf1 T1 Hx2

Modularisation (3)

98

Extraction 1

Pressure Vessel
Cooling Fails

AND

OR

Hx1PoW

OR

Cf2 Cf3 Cf4 PoWCf1 T1 Hx2

Pressure Vessel
Cooling Fails

AND

OR

Hx1

PoW

OR

Cf2 Cf3 Cf4Cf1 T1 Hx2

OR

Contraction 2 - No Change

Modularisation (4)

99

Factorisation 2

Pressure Vessel
Cooling Fails

AND

OR

Hx1

PoW

OR

Cf2 Cf3 Cf4Cf1 T1 Hx2

OR

Pressure Vessel
Cooling Fails

AND (G1)

OR

Hx1

PoW

OR

Cf6Cf5 Hx2

OR

Simplest possible Faunet representation

Modularisation (5)

100

Pressure Vessel
Cooling Fails

AND (G1)

OR

Hx1

PoW

OR

Cf6Cf5 Hx2

OR

Applying the Rauzy & Dutuit algorithm gives independent section Top and G1

AND

OR

Hx1

OR

Cf6Cf5 Hx2

G1Pressure Vessel
Cooling Fails

G1PoW

OR

Top Event Probability

101

𝑄𝐶𝑓𝑖 = 1 −ෑ

𝑗=1

𝑛

1 − 𝑞𝑥𝑗

Direct from component results

From factor

calculations

From factor calculations

From dependency model

From dependency model

Note - Motor from

complexity model

From factor calculations

Event

Code

Description I / E D-

Group

q

Cf1 P1. P2 I D1 0.00170988

Cf2 S1. S2 E 0.00034225

Cf3 Comp +

R1 + Fan +

Motor +

R2 + T2 +

V1

E 0.6035094

Cf4 P3S + P3R E D3 0.05285

Cf5 Cf1 + T1 E 0.0017338

Cf6 Cf2 + Cf3

+ Cf4

E 0.6246519

G1 BDD I

0.001091749

Cf7 PoW + G1 0.0020906577

BDD Analysis for G1

102

Pressure Vessel
Cooling Fails

AND (G1)

OR

Hx1

PoW

OR

Cf6Cf5 Hx2

OR

Cf5

Cf6

Hx2

1 0

Hx1

Variable Ordering

Cf5 < Hx1 < Cf6 < Hx2

BDD Probability Analysis

103

Cf5

Cf6

Hx2

1 0

Hx1

j pathj Ipathj

1 Cf51 , Cf61 Cf51 , Cf61

2 Cf51 , Cf60 , Hx21 Cf51 , Cf60 Hx21

3 Cf50 , Hx11 , Cf61 Cf50 ,Cf61 Hx11

4 Cf50 , Hx11 , Cf60 , Hx21 Cf50 , Cf60 Hx11 , Hx21

𝑄𝑆𝑌𝑆 = ෍

𝑗=0

𝑛𝑝𝑎𝑡ℎ

𝑃 𝐼𝑝𝑎𝑡ℎ𝑗 . ෑ

𝑘=1

𝑛𝑑𝑒𝑝

𝑃(𝐷𝑝𝑎𝑡ℎ𝑗
𝑘)

𝑄𝑝𝑎𝑡ℎ1 = 𝑃 𝐶𝑓51 . 𝑃 𝐶𝑓61 = 0.0010830

𝑄𝑝𝑎𝑡ℎ2 = 𝑃 𝐶𝑓51 . (1 − 𝑃 𝐶𝑓61) . 𝑃(𝐻𝑥21) = 8.8052957e-06

𝑄𝑝𝑎𝑡ℎ3 = (1 − 𝑃 𝐶𝑓51) . 𝑃 𝐶𝑓61 . 𝑃(𝐻𝑥11) = 0.0

𝑄𝑝𝑎𝑡ℎ4 = (1 − 𝑃 𝐶𝑓51) . (1 − 𝑃 𝐶𝑓61) . 𝑃(𝐻𝑥11, 𝐻𝑥21) = 0.0

𝑄𝐺1 = 0.00109175

Top Event Probability

104

𝑄𝐶𝑓𝑖 = 1 −ෑ

𝑗=1

𝑛

1 − 𝑞𝑥𝑗

Top Event Probability = 0.0020906577

Event

Code

Description I / E D-

Group

q

Cf1 P1. P2 I D1 0.00170988

Cf2 S1. S2 E 0.00034225

Cf3 Comp +

R1 + Fan +
Motor +

R2 + T2 +

V1

E 0.6035094

Cf4 P3S + P3R E D3 0.05285

Cf5 Cf1 + T1 E 0.0017338

Cf6 Cf2 + Cf3

+ Cf4

E 0.6246519

G1 BDD I

0.001091749

Cf7 PoW + G1 0.0020906577

Top Event Failure Intensity

105

Cf5

Cf6

Hx2

1 0

Hx1

𝐺𝑖 𝒒 = 𝑄𝑆𝑌𝑆 1𝑖 , 𝒒 − 𝑄𝑆𝑌𝑆 0𝑖 , 𝒒

𝑄𝑆𝑌𝑆 1𝑖 , 𝑞 = ෍

𝑥𝑖1∈𝑝𝑎𝑡ℎ𝑗

𝑃 𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖1 + ෍

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗

𝑃(𝑝𝑎𝑡ℎ𝑗|𝑥𝑖 = 1)

𝑄𝑆𝑌𝑆 0𝑖 , 𝑞 = ෍

𝑥𝑖0∈𝑝𝑎𝑡ℎ𝑗

𝑃 𝑝𝑎𝑡ℎ𝑗 − 𝑥𝑖0 + ෍

𝑥𝑖∉𝑝𝑎𝑡ℎ𝑗

𝑃(𝑝𝑎𝑡ℎ𝑗|𝑥𝑖 = 0)

𝑤𝑆𝑌𝑆(𝑡) = ෍
𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟𝑠

𝐺𝑖 𝒒 .𝑤𝑖 (𝑡)

Birnbaum’s Measure of Importance / Criticality Function

Initiators:

T1, Hx1, P1, P2, PoW

Top Event Failure Intensity

106

Variable Q(var=F) Q(var=W) Gi(var) Gi (var) w

Hx1 1.152147238 x 10-5

T1 0.6300421 0.0020756 0.6279665 6.2795143 x 10-6

P1 0.5042367 0.1268205 0.3774162 8.3356331 x 10-6

P2 0.5042367 0.1268205 0.3774162 8.3356331 x 10-6

PoW 1.0 0.0010918 0.9989082 9.979093 x 10-5

Top Events Failure Intensity

𝑤𝑆𝑌𝑆(𝑡) =1.342632 x 10-4 / hour

Conclusions

107

 Dynamic and Dependent Tree Theory, D2T2, enables the

evaluation of fault trees which are not limited by the restrictions

which apply to conventional fault trees solved by Kinetic Tree

Theory.

 The analysis algorithm utilises BDDs, Petri Nets and Markov

Models.

 Retains the familiar and popular fault tree causality structure.

 The Petri net and Markov models dedicated to solve the

complexities and dependencies are minimal in size.

 Modularisation of the fault tree minimises the size of the BDD

utilised in the system evaluation (and therefore the number of

paths).

108

The End

Any Questions?

Professor John Andrews

Faculty of Engineering

University of Nottingham

Nottingham, NG7 2RD

England

Email: john.andrews@nottingham.ac.uk

Dr Silvia Tolo

Faculty of Engineering

University of Nottingham

Nottingham, NG7 2RD

England

Email: silvia.tolo@nottingham.ac.uk

