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SUMMARY 

The tutorial presents a methodology, known as D2T2, Dynamic 

and Dependent Tree Theory, which overcomes some of the 

limitations of conventional fault tree analysis which restrict the 

ability of the approach to represent the performance of modern 

engineering systems. These include: 

i. Components having constant failure and repair 

rates. 

ii. All component failures being mutually 

independent. 

iii. Limited maintenance strategies to be 

accommodated. 

 

The D2T2 approach retains the fault tree structure to represent 

the causality of the system failure in terms of its component 

failures but the analysis process is changed to exploit the 

features of Binary Decision Diagrams, Petri nets and Markov 

models to overcome the limitations. 

 

1. INTRODUCTION - FAULT TREE ANALYSIS 

CHARACTERISTICS AND ASSUMPTIONS 

Fault Tree Analysis (FTA) is the most commonly used method 

in industry to analyse the reliability performance of systems.  

This is particularly true when the system is safety critical and 

its failure could result in injuries or fatalities to the workforce 

and the general public.  The method has its origins back in the 

1960s and 1970s in the nuclear and aerospace industries [1, 2].  

However, modern systems are designed, operated and 

maintained very differently to those of the era when the method 

was conceived.  There are several features and assumptions of 

the conventional FTA method, or its implementation in 

commercial codes, which limits its ability to represent the 

performance modern systems.  These include: 

i. all component failures being mutually 

independent. 

ii. components having constant failure and repair 

rates. 

iii. limited maintenance strategies to be represented. 

 

It is common for modern systems to have features which violate 

these assumptions rendering the results obtained from a fault 

tree study unrepresentative of the system performance. 

Independence between the basic events in the conventional 

fault tree is a fundamental requirement of the fault tree 

methodology. There are many aspects of system designs, their 

operation or maintenance which can violate this assumption.  

Component failure probability models, within the conventional 

implementation, feature constant failure and repair rates.  Many 

systems have components whose condition is deteriorating over 

time and their failure results from some form of wear-out.  As 

such their failure is not random and the failure rate is increasing 

not constant.  It can be argued that, since maintenance is not a 

random process, the repair rate is never constant.  Component 

failure probabilities, Q(t), are commonly evaluated using the 

following equations:  

No Repair 

 (1) 

 

 
where λ is the constant failure rate. 

 

Revealed Failures 

This is unscheduled, reactive, maintenance which takes place 

as soon as the component failure occurs.  For components with 

constant failure rate, λ, and constant repair rate, υ, the failure 

probability at time t is given by: 

 
 (2) 

 

Unrevealed failure 

When component failures are not revealed, tests are performed, 

at intervals of  θ, to establish their state.  The failure probability 

is then a function of  λ, θ and the mean time to repair, τ.  There 

are several models that can then be employed to calculate the 

average failure probability; a simple form is given in equation 

(3): 

 
       (3) 

 
  Maintenance processes are far more sophisticated than the 

three options represented in these equations.  Examples include 

servicing, component replacement prior to failure and 

opportunistic maintenance.   

 

This tutorial describes a framework (known as D2T2, Dynamic 

and Dependent Tree Theory) that will overcome the limitations, 

outlined above, whilst retaining the fault tree to express the 
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system failure logic.  The fundamental method employed for 

analysing the fault trees in this framework is the Binary 

Decision Diagram (BDD) method.  It will be shown how to 

calculate the system failure probability and failure intensity.  It 

builds on the material presented in the core tutorial ‘Fault Tree 

Analysis’ 

 

2. BINARY DECISION DIAGRAMS 

Binary Decision Diagrams provide a method for the 

efficient and accurate quantification of fault trees [3-9].  An 

example BDD is given in figure 1. 

 

 
 

Figure 1 Binary Decision Diagram Structure 

 
The entry point on the BDD is at the root vertex. The 

intermediate nodes all correspond to components in the system 

and two paths leave each node, a ‘1’ branch representing 

component failure and a ‘0’ branch for component functioning.  

To construct the diagram an ‘ordering’ must be assigned to the 

basic events which specifies the order in which each component 

is considered on the diagram.  A path on the diagram starts at 

the root vertex and progresses on a specific output branch from 

each node which determines the status of that particular 

component.  As soon as the component conditions specified on 

any path establish the system status then the path is terminated 

with the appropriate terminal-0 or terminal-1 node for system 

functioning or system failure respectively.  The concise nature 

of these diagrams is appealing from the mathematical 

perspective and results in efficient and accurate analysis.  From 

the engineering perspective they are not documented and do not  

develop the failure logic in any structured way.  As such, it is 

usually best to develop the system failure logic as a fault tree 

and then convert to a BDD for analysis. Two construction 

processes will be described.  The first uses the logic function 

obtained from the fault tree, the second manipulates equations 

using a special ite (if-then-else) notation. 

 

2.1  BDD construction using the system logic equations 

 

Consider the fault tree illustrated in figure 2 as an example.  

To convert this into a BDD the variables (basic events) are 

placed in an order (A, B, C for this example). 

 

TOP

GATE 1 GATE 2

A C B C
 

 
Figure 2 Simple Fault Tree 

 
For the fault tree in figure 2 we get an expression for the 

top event: 

 

TOP= (A+C).(B+C)   (4) 

 

(Note: in the logic equations given throughout this tutorial ‘+’ 

will be used for OR and ‘.’ for AND).  

 It does not matter what form this equation takes as long as it is 

only a function of the basic events.  The construction of the 

BDD then starts with the first variable in the ordering, A.  A is 

substituted as TRUE (failed) and FALSE (works) into the logic 

expression getting two new logic expressions to place on the 

output ‘1’ branch and ‘0’ branch respectively.  These two 

functions are in turn developed by substituting in TRUE and 

FALSE values for the second variable in the list, B.  This 

process is illustrated in figure 3 and, once completed, can be 

shown to produce the BDD illustrated in figure 1.   
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Figure 3 BDD Constructed from the System Logic Equation 

 

B

1

1

1 0

A

C

0

1

1

0

0

Root Vertex 

Event A fails 

Event A works Intermediate 

vertices 

(Basic Events) 

Terminal-1 

(Top Event occurs) 

Terminal-0 

(Top Event non-

occurrence) 

 



2.2  BDD construction using the ite form 

 

Since nodes on a BDD always have two exit edges there is 

a convenient mathematical form to express this.  We consider 

the basic event represented by a node, say X.   

IF the event X occurs  

THEN we pass down the ‘1-branch’ and consider the 

Boolean function represented on the BDD connected to 

this branch. (say f1).   

ELSE (the event has not occurred) we pass down the ‘0-

branch’ and consider the Boolean function represented on 

the BDD connected to this branch (say f2). 

This can be written in a very concise way: 

ite (X, f1 , f2) 

 

As an example consider the root vertex of the BDD illustrated 

in figure 3.  This can be expressed as: 

ite (A, f1 , f2) 

where f1= B + C  and f2 = C.(B + C ). 

 

The method described above to generate the BDD using a 

top event equation does not lend itself to implementation on a 

computer.  However, with the ite notation used to express each 

node on the BDD, mathematical rules can be established which 

are applied in a bottom up fashion to the fault tree and deliver 

the BDD form.   

Initially each basic event in the fault tree is expressed in 

the ite notation.  So for any basic event X we have:  

X = ite(X, 1 , 0) 

When we encounter a gate of logic type  which has two inputs 

G and H already expressed in ite form: 

G = ite (X, g1, g2)    and    H = ite (Y, h1, h2) 

then the following rules can be applied to get an ite expression 

for the gate event.  It depends on where the basic events X and 

Y appear in the ordering.  Either X < Y (X appears before Y) or 

X=Y (X and Y are the same variable). Then either: 

 

 G  H  = ite(X, g1  H, g2  H)       if X<Y      (5a) 

Or     G  H    =   ite (X, g1  h1, g2  h2)   if X=Y      (5b) 

 

 = AND (.) or OR (+) 

 

Once an ite expression is formed for any gate it is 

simplified as much as possible using the Boolean identities: 

 

G + 1 = 1   (6a)  G + 0 = G   (6b) 

      (6) 

G . 1 = G   (6c)  G . 0 = 0     (6d) 

 

Also ite (X, f1, f1) =f1 

 

As an example, consider the fault tree illustrated in figure 

2.  We will use the rules expressed in equations 5 and 6 and an 

ordering of the basic events A < B < C to convert this to a BDD.  

First all basic events are put into ite form: 

 ite (A, 1, 0)  ite (B, 1, 0) ite (C, 1, 0) 

 

Considering now GATE1: 

GATE1=A+C 

= ite(A,1 ,0)+ ite(C,1 ,0)  [use equation 5a] 

=ite(A, 1+ ite(C,1 ,0) , 0+ite(C,1 ,0) ) [use equations 6a and 

6b] 

=ite(A, 1, ite(C,1 ,0) ) 

 

Considering now GATE2: 

GATE2=B+C 

= ite(B,1 ,0)+ ite(C,1 ,0)  [use equation 5a] 

=ite(B, 1+ ite(C,1 ,0) , 0+ite(C,1 ,0) ) [use equations 6a and 

6b] 

=ite(B, 1, ite(C,1 ,0) ) 

 

Having now established expressions for GATE1 and 

GATE 2, an expression for the top event can be formulated: 

TOP=GATE1.GATE2 

= ite(A, 1, ite(C,1 ,0) ) .  ite(B, 1, ite(C,1 ,0) ) 

Using equation 5a, gives:    

=ite(A, 1. ite(B, 1, ite(C,1 ,0)) , ite(C,1 ,0) .ite(B, 1, ite(C,1 ,0) ))

   

Applying equation 6c to the 1-branch and equation 5a to the 

term on the 0-branch of the above expression gives: 

=ite(A, ite(B, 1, ite(C,1 ,0)) ,  ite(B, 1. ite(C,1 ,0) , ite(C,1 ,0). 

ite(C,1 ,0) ))  

Simplifying 

=ite(A, ite(B, 1, ite(C,1 ,0)) , ite(B, ite(C,1 ,0) , ite(C,1 ,0) )) 

=ite(A, ite(B, 1, ite(C,1 ,0)) , ite(C,1 ,0) )         (7) 

 
Equation 7 represents the ite expression for the final 

BDD.  It can be seen that the root vertex is A.  On its ‘1-

branch’ it has the expression  ite(B, 1, ite(C,1 ,0)) i.e. it is 

connected to the vertex B which has 1 and ite(C,1 ,0) on its 1 

and 0 branches respectively.  The ‘0-branch’ of A is connected 

to vertex C.  This produces the BDD illustrated in figure 4. 

The ite structure lends itself well to computer 

implementation. 

 

 
 

Figure 4  Minimal Cut Sets 

 
2.3  BDD construction using the system logic equations 

 

Whilst they are not needed in the quantification process, 

the BDD can be used to develop the minimal cut sets of the 

system.  Consider the definition of a minimal cut set: 

Cut Set: A list of component failed states which result in system 
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failure 

Minimal Cut Set: a cut set such that if any component failure 

is removed it no longer results in system failure. 

Figure 4 shows a simple example BDD structure.  Each 

path leading to a terminal-1 node contains the component 

conditions required for system failure.  If the working 

component states are ignored and only the failed component 

states listed then this corresponds to a cut set. For the BDD 

shown in figure 4 there is a path to a terminal-1 passing through 

nodes A and B on their 1-branches.  So AB is a cut set.  There 

are two paths through the BDD to the second terminal-1 node.  

The first passes through the 1-branch of A, the 0-branch of B 

and the 1-branch of C, giving cut set AC.  The second passes 

through the 0-branch of A and the 1-branch of C, giving cut set 

C.  The cut sets are: 

1.  AB 

2.  AC 

3.  C 

Since component A can be removed from cut set 2 and the 

system remains in the failed state, this is not a minimal cut set.  

Removing this from the list gives the minimal cut sets {AB}, 

{C}. 

The above approach demonstrates the way minimal cut sets 

can be obtained in a system assessment however, for a full 

minimal cut set analysis, the efficient process would be to 

construct a zero-suppressed BDD which encodes only minimal 

cut sets.  This is beyond the scope of this tutorial but details can 

be found in refs 6, 8.  

 

2.4  Variable Ordering Schemes 

 

The sequence specified for the component events when 

constructing the BDD structure plays a vital role in determining 

the size, and therefore the efficiency of the BDD produced to 

represent the logic function.  Consider the fault tree given in 

figure 5. 
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Figure 5 Fault Tree to Investigate Ordering Schemes 

 
 With ordering schemes of  A<B<C<D and D<C<B<A the 

resulting BDDs are illustrated in figures 6a and 6b respectively. 
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Figure 6a BBD for the Fault Tree in figure 5 

 

     

 
             

Figure 6b BBD for the Fault Tree in figure 5 

 
The BDD in figure 6a has 4 intermediate nodes and 

produces 3 cut sets (all minimal).  The BDD in figure 6b is not 

such an efficient representation with 4 intermediate nodes and 

5 cut sets (2 are non-minimal).  For a problem of this size the 

efficiency of the representation of the system failure logic is not 

important.  However, as the size of the system grows this can 

be critical if a BDD is to be constructed.  There is no universally 

accepted way in which the variable ordering can be specified 

and a number of approaches are possible [10].  The problem 

then becomes: given the characteristics of the original fault tree, 

select which strategy should be used to specify the variable 

ordering.  Neural networks have been used for this selection 

process [11, 12].  

Potential strategies to order the fault tree basic events are: 

• ‘neighbourhood’ methods where the fault tree is traversed 

in a systematic way and basic events listed as they are 

encountered.  One of the most common ordering methods 

is in this category and is known as ‘top-down, left right’ 

where the tree is traversed from top to bottom and on each 

level encountered from left to right listing the variables as 

they are encountered for the first time. (see figure 7) 

• ‘Structural importance’ methods allow nodes to be 

selected from anywhere in the tree structure. Nodes are 
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allocated a ‘weighting’ which indicates their contribution 

to the top event.  Highest ‘weightings’ ordered first. 

 

 
 

Figure 7  Top-down, Left-right Variable Ordering 

 

2.5  Calculating the Top Event failure probability 

 

It is with the system quantification that the BDD offers 

advantages over the conventional fault tree analysis method.  

Due to the way that the BDD is formed it has the characteristic 

that all paths through the BDD are disjoint. Consider any 

intermediate node X.  A path will pass this node on either the 

1-branch meaning that the event has occurred or the 0-branch 

meaning that it has not.  These conditions are mutually 

exclusive and so anything which appears below the 1-branch, 

and therefore contains the component failed state, will be 

mutually exclusive to any path through the 0-branch.  The 

branching at all other variables below this one results in all 

paths being disjoint. 

The BDD therefore expresses the structure function in a 

disjoint form.  The system failure probability, QSYS, is then 

simply the sum of the probability of all paths from the root node 

to a terminal-1 node (accounting for the failure/success of all 

components included in the path): 


paths all

1)- terminal toiP(path SYSQ   (8) 

Assuming an ordering of A<C<B<D, the BDD for the 

fault tree shown in figure 5 is given below (figure 8). 

 

 
 

Figure 8  BDD for the Fault Tree in figure 5 

The disjoint paths to a terminal-1 node are: 
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Summing the probabilities of these paths gives: 
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The points to note about this process are: 

1. the top event probability obtained is exact (approximations 

are not needed, 

2. the minimal cut sets were not required as an intermediate 

step in the calculations. 

This gives the BDD approach advantages in terms of both 

accuracy and efficiency over the conventional fault tree 

analysis approach. 

 

2.6  Calculating the Top Event failure intensity 

 

The system failure intensity, wsys, the rate at which the 

system fails given that it was functioning at time t=0 can be 

calculated using the expression: 
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where wi is the component failure intensity and Gi(q) is the 

Criticality Function (Birnbaum’s measure of importance [13]).  

wsys, is sometimes referred to as the unconditional failure 

intensity. 

The Criticality Function, Gi(q), is the probability that the 

system is in a critical state for component i such that the failure 

of component i causes system failure.  This can be evaluated 

using equation 12. 
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where Qsys(1i,q) is the system failure probability with qi=1 and 

Qsys(0i,q) is the system failure probability with qi=0. 

 

 

3. DEPENDENCIES IN ENGINEERING SYSTEMS 

Dependencies can occur between component failure events in 

many ways. As an example, a situation frequently encountered 

which introduces a dependency between its components is the 

use of standby redundancy.  Generators used to replace a 

primary power source in the event that it fails is an example of 

such a system.  Parallel pumping systems are another example.  

In standby systems, one component is operational and should it 

fail a backup component is activated.  This type of system can 
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be classified in three ways depending on how the backup 

component is considered to behave when it is non-operational.  

These classifications are known as hot standby, warm standby 

and cold standby.   

Hot standby: components are considered as having the same 

failure rate in standby as in operation. 

Warm standby: components are considered as having a lower 

failure rate in standby than in operation. 

Cold standby: components are considered not to fail in 

standby. 

Warm and Cold standby systems produce a dependency 

where the likelihood of failure of the standby component is 

dependent upon the state of the primary component. 

 

Other examples of situations which introduce dependencies 

in engineering systems are shown in table 1. 

When dependencies exist in a system, conventional fault tree 

analysis is not an appropriate means to predict its failure 

characteristics. 

 

Type Description Example 

Secondary 

Failure When one component fails it increases 

the load on a second component which 

then experiences an increased failure 

rate   
Two pumps both operational and 

sharing the load.  Each pump has the 

capability to deliver the full demand 

should the other pump fail 
Opportunistic 

Maintenance A component fails which causes a 

system shutdown or that requires 

specialist equipment for the repair. 

 
The opportunity is taken to do work on 

a second component which has not 

failed but is in a degraded state  

Components on a circuit board. 

 
Components in a sub-sea production 

module 

Common 

Cause When one characteristic (eg materials, 

manufacturing, location, operation, 

installation maintenance) causes the 

degraded performance in several 

components 

Incorrect maintenance done on 

several identical sensors 

 

Impact breaks the circuit on cables 

routed in the same way to different 

redundant channels  
Queueing  Failed components all needing the same 

maintenance resource are queued.  Then 

repaired in priority order  
Limited number of maintenance 

teams, equipment or spares 

 

Table 1   Dependency types 

 

 

4. MODELLING DEPENDENCIES  

Two methods are considered for calculating the probability of 

systems which feature dependencies:  Petri nets and Markov 

models.  Petri nets are the most general of the two methods and 

can solve all situations that Markov models can solve and more 

beyond.  However, in certain situations Markov can provide a 

more efficient solution than Petri nets and so the method has 

been incorporated for these situations.  It is expected that most 

situations that involve complexities or dependencies in the 

system model will be solved using a Petri net. 

 

4.1 Markov Analysis 

A Markov model comprises two elements: nodes and 

transitions [14-16].  For system failure models, the nodes 

represent the possible states of the system. This is the complete 

set of mutually exclusive states in which a system can reside. 

The states are usually described by defining which components 

are working or failed. Transitions between states then represent 

component failures and repairs. Following the formulation of a 

Markov model its analysis will yield the probability of being in 

any of the states. The system failure probability is then 

determined by summing the probabilities of residing in those 

states which represent a system failure condition. 

For the basic Markov approach to be applicable the system 

must be characterized by a lack of memory, that is, the future 

states of the system are independent of all past states except the 

immediately preceding one. So the future behaviour depends 

only on its present state, not the history of what has happened 

in the past. This is represented by the equation 13 where 𝑋𝑡 is a 

random variable representing the state in which the system 

resides at time t. 

 
𝑃(𝑋𝑡+d𝑡 = 𝑘 | 𝑋𝑡 = 𝑗, 𝑋𝑡−d𝑡 = 𝑖, 𝑋𝑡−2d𝑡 = ℎ, … , 𝑋0 = 𝑎) 

     = 𝑃(𝑋𝑡+d𝑡 = 𝑘| 𝑋𝑡 = 𝑗)                                    (13) 

 
Also, the system behaviour must not vary with time. The 

probability of making a transition from one state to another 

must be constant. This type of process is called stationary or 

homogenous. If the transition probabilities are functions of time 

then the process is not stationary and is known as non-

Markovian. 

With the lack-of-memory property, the likelihood of a 

component failure is only dependent on the fact that it is 

currently working. It does not matter that it may have been 

perfectly reliable up to this time or that it may have failed 

several times before. 

The homogenous property means that the transitions between 

states are not dependent on time. They are, therefore, governed 

by a constant rate, and times between transitions are governed 

by the exponential distribution. 

The first stage of the Markov analysis is to draw the state 

transition diagram. This takes the form of a directed graph 

where each node represents one of the discrete system states, 

and, for continuous time Markov models, the edges indicate the 

transition frequencies between the states in the direction 

indicated by an arrow drawn on the edge. 

 
4.1.1 Example – Single-Component Failure/Repair Process 

 

As an example consider the simple case of a single 

repairable component. The component undergoes an 

alternating sequence of failure and repair with constant rates. 

The component can exist in one of two states, working or 

failed. The state transition diagram for this situation is given 

in figure 9. 

 
Figure 9. Repairable Component State Transition Diagram 



 
The component can be considered to start in the working state 

at time t = 0. Transition from the working state, 1, to the failed 

state, 2, occurs with rate λ. Failure is immediately revealed and 

transition back to the working state, the repair process, occurs 

with rate v. 

Let  𝑃𝑤(𝑡) denote the probability of the component working 

at time t and 𝑃𝑓(𝑡) the probability of the component being in 

the failed state at t.  Differential equations relating these 

probabilities can be derived directly from the state transition 

diagram by considering the following rule for each state: 

 

  
d𝑃state

d𝑡
=  (rate of entering state) − (rate of leaving state)

                      (14) 

Therefore: 

 

   
d𝑃𝑤(𝑡)

d𝑡
= −𝜆𝑃𝑤(𝑡) + 𝑣𝑃𝑓(𝑡)                  (15) 

 

 

      
d𝑃𝑓(𝑡)

d𝑡
= 𝜆𝑃𝑤(𝑡) − 𝑣𝑃𝑓(𝑡)                  (16) 

 
In matrix form this is: 

 

  [�̇�𝑤(𝑡), �̇�𝑓(𝑡)] = [𝑃𝑤(𝑡), 𝑃𝑓(𝑡)] [
−𝜆 𝜆
𝑣 −𝑣

]

                      (17)

  

i.e.                    �̇� = 𝑷 𝐀                            (18) 

 
where A is the state transition matrix. 

 

4.1.2 General Markov State Transition Model Construction 

 

The two-state Markov model representing a single component 

described in the previous section is the simplest model possible. 

The method is more commonly used to model more complex 

systems comprising several components. States on the Markov 

model are required to be mutually exclusive and exhaustive. 

That is, they must be non-overlapping and represent every 

possible state in which the system can reside. A possible way 

to generate the system states is to identify the functionality or 

failure mode for each component in the system and list all 

possible combinations. Sometimes it is easy to write down all 

possible states; for example, for a system with two components 

which either work or fail, the Markov state transition diagram 

is show in figure 10. For components A and B, either both 

components work, state 1, or both components fail, state 4, or 

there are two ways in which one component works and one 

fails, states 2 and 3. The transitions rates 𝜆A, 𝜆B and repair rates 

𝑣A, 𝑣B are incorporated on the diagram.  

 

 

 
 

Figure 10. Two-Component Markov Model 

 
The state transition matrix can be formulated directly from the 

transition diagram using the following rules: 

 

(a) the dimensions of the matrix are equal to the number 

of states in the model; 

(b) an off-diagonal element in row i column j represents 

the transition rate from state i to state j; 

(c) a diagonal element row i, column i is the transition rate 

out of state i (always negative).    (i.e. all rows sum to 

zero) 

 
Using these rules to form the state transition matrix for the 

two-component system whose Markov diagram is illustrated in 

figure 10 gives: 

 

   𝐀 = [

−(𝜆A + 𝜆B) 𝜆A 𝜆B 0
𝑣A −(𝑣A + 𝜆B) 0 𝜆B

𝑣B 0 −(𝑣B + 𝜆A) 𝜆A

0 𝑣B 𝑣A −(𝑣A + 𝑣B)

] 

             
           (19) 

 

with initial conditions: 

 

𝑃1(0) = 1.0,   𝑃2(0) = 𝑃3(0) = 𝑃4(0) = 0.0 
 

 
4.2 Petri Nets 

 
The Petri net is an alternative approach to Markov models for 

solving State-Space problems.  It has been used to represent the 

dynamic processes in ‘systems’ occurring in science, 

engineering and business and was developed by Petri [17] in 

1963.  

 

A Petri Net [18] is a graphical model having fundamental 

elements: places, transitions, arcs and tokens. A place 

represents a condition or event in the system and is illustrated 

by a circle. A token, denoted by a dot, is located in a place to 



represent the existence of that condition. A transition allows the 

tokens to move between places in the model which represents 

the dynamic changes in condition of the system.  The transition 

appears as a rectangle on the graph. Arcs are used to connect 

input places to transitions and transitions to output places.  A 

number, known as the multiplicity, can be associated with any 

arc.  If no multiplicity is stated then it has a default value of 1.  

The state of the system at any time in the simulation is 

characterised by the marking of the net which records the 

number of tokens residing in each place. A small example Petri 

net is shown in figure 11. 

 
There are rules which govern the way that transitions ‘fire’ to 

move tokens around the network.  In order for a transition to 

fire it must first be enabled. A transition is enabled when all of 

its input places contain at least the number of tokens as the 

multiplicity of the connecting arc.  The transition has an 

associated time, specified by a value or a distribution.  After a 

time delay specified or sampled from the appropriate 

distribution, the transition fires and removes the multiplicity of 

tokens from the input places and deposits the multiplicity of 

tokens to the output places.  This is illustrated by the transition 

D1 for the Petri net at the top of figure 11. 

 

 

 
 

 
Figure 11.  Simple Petri Net Transition Firing Process with 

Arc Multiplicities and an Inhibitor Arc. 

 
Another feature of the basic Petri Net representation is the 

inhibitor arc which is used to prevent a transition from firing. 

As shown in figure 12, it appears on the graph as an arc (with 

associated multiplicity) with a round end connecting a place to 

a transition. When the arc input place contains at least the 

multiplicity of tokens of the arc the transition is inhibited and 

will not fire. 

 

 

 
Figure 12. Inhibitor Arc 

 
The solution of the Petri net is obtained using Monte Carlo 

simulation [19].  This performs a large number of model 

simulations deriving the times at which the transitions occur 

by taking random samples from their associated governing 

distributions.  For each simulation the durations of residing in 

places, representing the system key performance parameters or 

the number of times the key places are entered, are recorded.   

In this way, distributions of the residence times, or the number 

of occurrences of these system states, can be established. It is 

common to use the averages of these distributions to judge the 

system performance. 

 

The Petri nets used in the system modelling can extend the 

commonly used transition types to enhance the efficiency of 

the modelling capability. 
 

4.2.1 Special Transitions 

 

The enabling and firing processes for the newly defined 

transition types [20] are the same as those for the standard 

transitions used in the traditional Petri net method.  However, 

the transitions also contain properties to execute additional 

tasks concisely.  

 

 Periodic transition: This transition fires only when the 

system time is at a specified value. It can be used to 

represent the inspection process where the condition of an 

element is revealed through inspection performed at 

regular intervals.  

 Reset transition: This transition resets the marking of 

specified places in the Petri net to some desired state. It 

has an associated list of places and the number of tokens 

that they will contain after the reset. Its use is in initialising 

the relevant Petri net places when actions such as a 

renewal are performed. 

 Conditional transition:  This transition type enables the 

firing time distribution to be dependent upon the number 

of tokens residing in another place on the network.  A 

dashed line links this place to the transition.  This enables 

degradation times to be linked to the number of prior 

interventions that have been performed.   

 

In the stochastic models which will link the degradation and 

maintenance processes the transition times between the states 

must be specified.  These are usually obtained from historic 



data collected to monitor the performance of this system or 

similar systems.  Data for the times to any event occurrences 

are then used to define a statistical distribution which represents 

the transition times.  It is possible to use any statistical 

distribution in this process, however, common choices for 

reliability type problems are the exponential, Weibull and 

lognormal distributions.  

 
4.3 Dependency Modelling 

 

  Whichever of the methods, Markov or Petri net, is used to 

address the dependencies, problems can be experienced if it is 

used to model the whole system.  With Markov models there 

can be a state space explosion where the number of states grows 

exponentially with the number of components in the system.  

For a Petri net solved using Monte Carlo simulation, it can take 

substantial computer resources to achieve convergence for 

systems whose failure is rare.    

   Markov or Petri net models for the whole system also lack the 

causality structure of fault trees making peer review and 

auditing of the models difficult. 

 

 

5. D2T2 MODELLING REQUIREMENTS 

 

The approach taken in the Dynamic and Dependent Tree 

Theory (D2T2) modelling framework, which overcomes the 

limitations of conventional fault tree analysis and retains the 

fault tree structure to represent the failure, is shown in Figure 

13.   The objective is to perform the analysis efficiently which 

means that: 

i. the dependency models are minimised containing 

only those events which are mutually dependent. 

(Rather than sections of the fault tree). 

ii. the sizes of the BDDs are also minimised by using 

effective variable ordering and modularisation 

approaches. 

 

 
 

Figure 13 D2T2 analysis framework 

   
For a conventional fault tree analysis the input data will specify 

the structure of the fault tree along with the failure/repair 

characteristics for the components.  For the D2T2 modelling 

framework, the fault tree structure file remains the same.  The 

component failure/repair models are no longer limited to 

exponential failure time and repair time distributions.  Any 

distribution can be accommodated for the state transition times.  

As shown in figure 13, these two files are supplemented by a 

third file which defines any dependencies between events and 

the models, either Markov or Petri net, which represent them. 

  The analysis then proceeds to identify the smallest modules 

that are independent of the rest of the system structure for 

analysis by either BDD, Petri net or Markov approaches.   This 

part is achieved through the modularisation described below.  

The BDD, Petri net and Markov modelling solutions have been 

described in sections 2, 4.1 and 4.2 respectively.  The results of 

these are integrated as described in section 7 below.  The 

integration of the results will deliver the system failure 

probability or frequency.  

 

6. FAULT TREE MODULARISATION 

 

  When the basic events in the fault tree are independent then 

there are two very effective approaches to finding independent 

modules of the tree.  The first was used in the Faunet code from 

Riso [21], the second is a linear time algorithm which 

systematically transverses the fault tree [22].  Whilst very 

effective at reducing the complexity of the problem when the 

basic events are independent they do not provide the smallest 

possible independent modules.  These approaches have been 

revised to accommodate the dependencies and are presented 

below.  For an effective reduction in the problem, to achieve 

objective ii in section 5, they are applied one after the other. 

Prior to their application dependency groups are identified.  

These are groups of components which may experience at least 

one dependency between them but are mutually independent 

from all other component failures in the fault tree.   

 
 6.1 Fault Tree Factorisation 

 
This approach repeatedly applies three operations until they 

can be no-longer applied.  The operations are: 

 

i. Contraction 

Subsequent gates of the same type are contracted into a  

single gate 

 

ii. Factorisation 

Identifies factors, expressed as groups of events that 

always occur together in the same gate type.  The factors 

can be any number of events if they satisfy the following:   

- All events in the group are independent and 

either initiators or enablers [23]. 

- All events in the group feature a 

dependency and contain all events in the 

same dependency group. 

 
iii. Extraction 

Restructures fault tree structures where a repeated event 

can be extracted, as shown in Figure 14. 
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Figure 14 Extraction operation 

 
For those independent factors identified in step ii their 

probabilities, Qcfi, and frequencies, wcfi,  are calculated, in terms 

if element probabilities and intensities, qj, wj using: 

 

For OR combinations Cfi= x1+x2+….+ xn 

 

 

𝑄𝑐𝑓𝑖
= 1 − ∏(1 − 𝑞𝑥𝑗

𝑛

𝑗=1

)                                                           (20) 

    In the event that the factor contains only initiators: 

 

𝑤𝑐𝑓𝑖
= ∑ 𝑤𝑗

𝑛

𝑗=1

∏(1 − 𝑞𝑥𝑘

𝑛

𝑘=1
𝑘≠𝑗

)                                                      (21) 

For AND combinations Cfi= x1.x2.….. xn 

 

𝑄𝑐𝑓𝑖
= ∏ 𝑞𝑥𝑗

𝑛

𝑗=1

                                                                             (22) 

    In the event that the factor contains only initiators: 

 

𝑤𝑐𝑓𝑖
= ∑ 𝑤𝑗

𝑛

𝑗=1
𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟𝑠

∏ 𝑞𝑥𝑘

𝑛

𝑘=1
𝑘≠𝑗

                                                       (23) 

 
 

For factors with dependencies that are solved using Markov or 

Petri net models, the required factor probabilities and intensities 

are extracted directly from the model. 

 

6.2 Linear-time modularisation 

 
Attempts are then made to further simplify the fault tree 

structure which remains after applying the factorisation 

modularisation.  Each basic event appearing in a dependency 

group is then replaced in the fault tree structure with its 

dependency group label.  The linear time algorithm is then 

applied as described in [22] and may result in the fault tree 

being broken down into further independent modules. 

 

 
7. D2T2

 DYNAMIC AND DEPENDENT FAULT TREE 

ANALYSIS 

 

In utilising the BDD method, it is possible to exploit the fact 

that the paths are all mutually disjoint to integrate the results 

from the dependency models into the fault tree structures.  The 

disjoint nature of the paths means that it is only necessary to 

deal with dependencies between the events occurring on any 

path to a terminal-1 and not the dependencies occurring 

between the paths.  The system failure probability is then the 

sum of the probability of the paths to a terminal-1, which is a 

function of the probability of the event combinations in any 

dependency group k, 𝐷𝑝𝑎𝑡ℎ𝑗
𝑘  , and the independent component 

failures, 𝐼𝑝𝑎𝑡ℎ𝑗 , evaluated using equation 24. 

 

 

 

 

 

 
In order to evaluate the system failure intensity, the probability 

equation, (24) is used to evaluate the criticality function which 

is used as expressed in equation 11. 

 

 
8. CASE STUDY – PLANT COOLING SYSTEM 

 
The above method is demonstrated through its application to a 

plant cooling system.  The system is illustrated in figure 15. 

 

 
Figure 15 Plant Cooling System 

 

The cooling system features a primary, normally operational, 

cooling sub-system, comprising a tank (T1), pumps (P1 and P2) 

and heat exchanger (Hx1).  Both pumps normally function but 
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should either fail, the coolant to the heat exchanger can be 

supplied by a single pump.  

 

The temperature of the pressure vessel is monitored by a sub-

system featuring two temperature sensors (S1 and S2).  The 

signals from the sensors feed into a computer (Comp) and 

should either sensor indicate a higher than expected vessel 

temperature, the computer will activate an alternative means of 

cooling.  This is achieved by de-energising an output which 

removes power from the two relays (R1 and R2). 

 

When R1 de-energises its contacts close and powers the motor 

for the secondary cooling fan system.  R2 acts similarly to open 

motorized valve V1 and power pump P3 in the secondary 

cooling water system which draws water from tank (T2) and 

delivers it to heat exchanger (Hx2). 

 
The valve V1 and pumps P1, P2 and P3 all have a common 

power supply, PoW. 

 
There are three dependencies which feature in the system: 

 

i. Pumps P1 & P2 – if one fails it puts increased load 

on the other (and increases its failure rate). 

ii. Heat Exchangers Hx1 & Hx2 – since specialist 

equipment is needed when one needs replacement, 

the opportunity is taken to replace both. 

iii. Pump P3 - can fail to start when the demand occurs 

(P3S) and fail once running to provide cooling for 

the required time (P3R).  The two events P3S and 

P3R are clearly dependent. 

 
Failure and repair data for the basic events in the fault tree, 

accounting for the dependent failures, is given in table 2.   

 

There is an additional complexity.  As can be seen from table 

2, the motor does not have constant failure and repair rates.  Its 

failure times are governed by a Weibull distribution and its 

repair times are given by a lognormal distribution. 

The dependencies and the complexity are solved using 

appropriate Petri nets and Markov models as discussed in the 

next section. 

 
8.1 Complexity and dependency models 

 

8.1.1 Motor failure model 

 
The motor has failure times from a Weibull distribution, 

Weib(β=1.5, η=1200 hours), and repair times distributed by 

LogN(μ=24.0 hours, σ=4.8 hours).  This is solved using a very 

simple Petri net as shown in Figure 16 and the results shown in 

table 3. 

 

 

 

 

 

 

 
Table 2  Component failure and repair data. 

 

 

 
 

Figure 16    Motor failure and repair Petri net 

 

 

 
Table 3 Quantification results from the Motor Petri net in 

figure 16 

 

Event 

Code 

Description I / E D-

Group 

Failure 

rate 

(/hour) 

Mean 

time to 

repair 

(hours) 

Inspect 

interval 

(hours) 

q w 

P1, 

P2 

Pumps fail 

when running 

I D1 Failure rate 𝜆1 = 2 × 10−5 /h under normal load               

                 𝜆2 = 5 × 10−3/h under full load 

Repair rate ν= 0.041667  (MTTF = 24hrs) 

 

T1 Water Supply 

failure 

I  1x10-5 24  2.4x10-5 9.99976 

x10-6 

Hx1 Heat 

Exchanger 

fails 

I D2 Failure time = W(β=2.5, η=30,000h) 

The system is shut down when the repair is 

undertaken 

PoW Power supply 

failure 

I  1x10-4 10  1x10-3 9.99 

x10-5 

S1, 

S2 

Sensor fails 

to detect a 

high 

temperature 

E  5x10-4 5 730 0.185  

Comp Computer 

fails to 

process 

sensor signals 

E  5x10-5 5 2190 0.055  

R1 / 

R2 

Relay 

contacts fail 

to close  

E  1x10-5 24 2190 0.0112  

Fan Fan fails E  2x10-6 8 2190 2.206 

x10-3 

 

Motor Fan motor 

fails 

E C1 Failure time = W(β=1.5, η=12,000h) 

Repair time = LogN(μ=24hrs, σ=4.8h)  

P3S Pump fails to 

activate 

E D3     0.05  

P3R Pump fails 

when running 

E D3 1x10-4     

T2 Water Supply 

failure 

E  1x10-5 24 2190 0.0112  

Hx2 Heat 

Exchanger 

fails 

E D2 Failure time = W(β=2.5, η=30,000h) 

The system is shut down when the repair is 

undertaken 

V1 Valve fails to 

open 

E  5x10-5 30 2190 0.05625  

 

Motor 
Working

Motor 
Failed

W(β,η) 

LN(μ,σ)

STATE Probability Frequency (per 

hour)

Motor 

Failed

0.0058389642 8.686868 x 10-5 



8.1.2 Hx1 and Hx2 failure dependency Petri net model  

 

The Petri net used to model the maintenance repair 

dependency between the two heat exchangers is shown in figure 

17.  

 
Figure 17 Heat exchanger dependency Petri net model 

 

The results of simulating the Petri net model are: 

 
State Probabilities: 

P(Hx1W, Hx2W)=0.98646987828725829 

P(Hx1W, Hx2F)=0.0135301 

P(Hx1F, Hx2F)=0.0                   

P(Hx1F)=0.0 

P(Hx2F| Hx1F)=0.0 

P(Hx2F| Hx1W)= 0.0135301 

   (25) 

State Failure Intensities 

w(Hx1F, Hx2_unrevealed)=3.1709792 x 10-07   /hour 

w(Hx1F, Hx2W)=1.8161063 x 10-05 /hour                          

w(Hx1F)=1.8478161 x 10-05  /hour 

 
8.1.3 Pumps P1 and P2 failure Markov model 

 
  Since pumps P1 and P2 in the primary cooling circuit have 

constant failure and repair rates, both Petri nets and Markov 

methods could be used to model their dependency.  The Markov 

method is selected in this case since it offers a more efficient 

solution.  

The Markov state transition diagram is shown in figure 18. 

 

 
Figure 18 Markov model of the P1 and P2 dependency 

The results from the Markov analysis are shown in table 4. 

 

 
Table 4 results from the Markov model shown in figure 18 

 

 

8.1.4 Dependent failure modes for pump P3 

 
The probabilities of the two dependent failure modes for 

pump P3, failure to start, P3S, and failure once running, P3R, 

can be used to deliver the failure probability of P3 to work for 

the required period using: 

  
𝑞𝑃3 = 𝑞𝑃3𝑆 + (1.0 − 𝑞𝑃3𝑆)𝜆𝑃3𝑅. 𝑡𝑝𝑒𝑟𝑖𝑜𝑑                                  (26) 

        = 0.05 + 0.95 × 10−4 × 30 = 0.05285 
 

8.2 Failure of the Plant Cooling System Fault Tree 

 

The fault tree for the pressure vessel cooling system failure is 

shown in figure 19.  The branches of the fault tree are 

terminated in basic events, component failure events listed in 

table 2.  All events on the left-hand branch of the fault tree 

represent the causes of failure of the primary cooling system.  

These are all initiators [23].  Events on all other branches, 

representing the failure of safety systems to respond, are 

enablers. 

 

Figure 19 Pressure Vessel Cooling System Failure Fault Tree 
 

8.3 Fault Tree modularisation 

 

8.3.1 Fault Tree Factorisation 

Applying the Factorisation algorithm, shown in section 6.1,  

to the fault tree in figure 19 is accomplished in the following 

steps: 

 

Contraction 1 

The OR gates which lead into OR gates for both the ‘primary 

cooling system fails’ and ‘auxiliary cooling system fails’ events 

are contracted into a single OR gate structure.  The resultant 

fault tree is shown in figure 20.  
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Figure 20 Contracted fault tree structure 

 
Factorisation 1 

Following the rules for the identification of factors given in 

section 6.1, the following factors can be identified in the fault 

tree in figure 20.  

 
𝐶𝑓1 = 𝑃1. 𝑃2     (dependency group D1 – initiators) 

𝐶𝑓2 = 𝑆1. 𝑆2      (independent enablers) 

𝐶𝑓3 = 𝐶𝑜𝑚𝑝 + 𝑅1 + 𝐹𝑎𝑛 + 𝑀𝑜𝑡𝑜𝑟 + 𝑅2 + 𝑇2 + 𝑉1  
   (independent enablers) 

𝐶𝑓4 = 𝑃3𝑆 + 𝑃3𝑅 (dependency group D3 – enablers) 

             (27) 

 

Substituting these factors into the fault tree reduces 

it to that shown in figure 21.  

 

Figure 21  Factorized fault tree 
 

Extraction 1 

The fault tree in figure 21 can be seen to have a repeated basic 

event representing the power failure to the pumps and valve, 

PoW.   Restructuring the fault tree as shown in the top diagram 

in figure 14, produces the structure shown in figure 22. 

 

 
Figure 22  Fault Tree after Extraction 1 stage 

 
The three stages are now applied for a second time.  Since the 

fault tree is now already in an alternating sequence of AND and 

OR gates the application of Contraction 2 does not change 

anything. 

 

Factorise 2 

This second application of factorization picks out a second list 

of factors: 

 
𝐶𝑓5 = 𝐶𝑓1 + 𝑇1   (initiator)        (28) 

𝐶𝑓6 = 𝐶𝑓2 + 𝐶𝑓3 + 𝐶𝑓4  (enabler) 

 
Substituting these factors into the fault tree structure gives the 

fault tree illustrated in figure 23.  This is the minimal fault tree 

structure as far as the factorisation algorithm is concerned.   

This has significantly reduced the complexity of the fault tree 

structure from the original tree, shown in figure 19 which had: 

 

19 basic events, 10 gates 

34 min cut sets (1 order 1, 20 order 2, 12 order 3 and 1 order 4) 

 

to the tree in figure 23 which has: 

  

5 basic events, 4 gates 

5 min cut sets (1 order 1, 4 order 2)  

 

 
Figure 23 Final fault tree from the factorization algorithm 

 

 
8.3.2 Linear Time Modularisation Algorithm 

 

Application of the linear time algorithm of Rauzy and Dutuit 

[22] reduces the tree still further.   It identifies gates top event 

and gate G1 in the fault tree in figure 23 to be modules.  These 

modules are shown in figure 24.  These are the fault trees which 

can be solved using the BDD method (or as a simple factor Cf7 

= PoW + G1). 
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Figure 24 final fault tree independent modules 

 
8.4 Quantifying the independent basic events and factors 

 

The quantification of the fault tree requires the probability of 

the independent events and factors to be calculated.  For those 

basic events that are not involved in any dependency or 

complexity models, then equations 1-3 are used, as appropriate. 

The results are provided in table 2.   

The modularisation process identified 6 independent factors.  

The probability of these are calculated using the appropriate 

equations 20, 22.  Factor Cf2 is an AND combination of 

independent basic events, S1 and S2, and so equation 22 is used. 

Cf3, Cf5 and Cf6 are OR combinations of independent events 

and so equation 20 is appropriate.  It should be noted that motor 

is a basic event input to Cf3 and, although this is independent 

from the other inputs to Cf3, it features a complexity which 

means its likelihood is evaluated using the Petri net in figure 

16. The probability of Cf1, which is the probability that P1 and 

P2 both fail, is extracted from the Markov model shown in 

figure 18.  The final factor, Cf4, also comprised of dependent 

events, in this case P3R and P3S.  The probability of P3 failing 

to function on demand and continue for the required duration is 

given by equation 26.     

A list of the probabilities of factors Cf1-Cf6 are provided in 

table 5. 

 

 
Table 5 factor probabilities 

 
8.5 Analysis of the Fault Tree 

 

8.5.1 Top Event failure probability 

 
  The fault tree which needs to be analysed is that illustrated 

in figure 24 with the top event G1.  It contains independent 

events Cf5 and Cf6 along with dependent events Hx1 and Hx2. 

To perform the analysis of this fault tree first requires its 

conversion to a BDD. An ordering is therefore placed on the 

basic events, Cf5 < Hx1 < Cf6 < Hx2.  This produces the BDD 

shown in figure 25. 

 

The quantification of the BDD probability requires that the 

dependency between Hx1 and Hx2 is accounted for when 

evaluating equation 24.  There are 4 paths through the BDD, as 

listed in table 6, the probability of each of the paths is evaluated, 

giving: 

 
𝑄𝑝𝑎𝑡ℎ1 = 𝑃(𝐶𝑓51). 𝑃(𝐶𝑓61)  =  0.0010830                                                    (29) 

 
𝑄𝑝𝑎𝑡ℎ2 = 𝑃(𝐶𝑓51). (1 − 𝑃(𝐶𝑓61)). 𝑃(𝐻𝑥21) = 8.8052957e-06               (30)  

 
𝑄𝑝𝑎𝑡ℎ3 = (1 − 𝑃(𝐶𝑓51)). 𝑃(𝐶𝑓61). 𝑃(𝐻𝑥11)=0.0                                          (31)  
 
𝑄𝑝𝑎𝑡ℎ4 = (1 − 𝑃(𝐶𝑓51)). (1 − 𝑃(𝐶𝑓61)). 𝑃(𝐻𝑥11, 𝐻𝑥21) = 0.0                (32)  

 
 

 
Table 6   paths through the BDD in figure 25 

 

 
Figure 25 BDD for the fault tree with top event G1 

 
 Summing equations 29 to 32 gives the probability of event 

G1 as 0.00109175. 

 

Finally, the probability that the pressure vessel temperature 

protection system fails is calculated from:   

 

P(Top) = P(G1 + PoW) = 0.0020906577          (33) 

 
8.5.2 Top Event failure intensity 

 
For the top event failure intensity to be evaluated then the 

criticality function for each initiating event (P1, P2, PoW, Hx1 

and T1) is calculated using equations 11 and 12.  The results 

obtained are shown in table 7. 

 

AND

OR

Hx1

OR

Cf6Cf5 Hx2

G1Pressure Vessel 
Cooling Fails

G1PoW

OR

Event 

Code 

Description I / E D-

Group 

q 

Cf1  P1. P2 I  D1  0.00170988 

Cf2  S1. S2  E   0.00034225 

Cf3 Comp +

R1 + Fan +

Motor +

R2 + T2 +

V1  

E   0.6035094 

Cf4 P3S + P3R E  D3 0.05285 

Cf5 Cf1 + T1 E   0.0017338 

Cf6 Cf2 + Cf3

+ Cf4 

E   0.6246519 

G1 BDD I 
 

0.001091749 

Cf7 PoW + G1     0.0020906577 

 

j pathj Ipathj

1 Cf51 , Cf61 Cf51 , Cf61 

2 Cf51 , Cf60  , Hx21 Cf51 , Cf60 Hx21

3 Cf50 , Hx11 , Cf61 Cf50 ,Cf61 Hx11

4 Cf50 , Hx11 , Cf60 , Hx21 Cf50 , Cf60 Hx11 , Hx21

Cf5

Cf6

Hx2

1 0

Hx1



 
Table 7 calculating the system failure intensity 

 
  Summing the intensities over the initiators gives the failure 

rate of the pressure vessel cooling system as 1.342632 x 10-4 / 

hour. 

 
9. CONCLUSIONS  

 
• Dynamic and Dependent Tree Theory, D2T2, enables the 

evaluation of fault trees which are not limited by the 

restrictions which apply to conventional fault trees solved 

by traditional Kinetic Tree Theory. 

• The analysis algorithm utilises BDDs, Petri Nets and 

Markov Models. 

• Retains the familiar and popular fault tree causality 

structure. 

• The Petri net and Markov models dedicated to solve the 

complexities and dependencies are minimal in size.  

• Modularisation of the fault tree minimises the size of the 

BDD utilised in the system evaluation (and therefore the 

number of paths). 
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Variable Q(var=F) Q(var=W) Gi(var) Gi (var) w

Hx1 1.152147238 x 10-5

T1 0.6300421 0.0020756 0.6279665 6.2795143 x 10-6

P1 0.5042367 0.1268205 0.3774162 8.3356331 x 10-6

P2 0.5042367 0.1268205 0.3774162 8.3356331 x 10-6

PoW 1.0 0.0010918 0.9989082 9.979093 x 10-5
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