
Next Generation Fault Tree Analysis Methods

Prof John Andrews, University of Nottingham

Dr Silvia Tolo, University of Nottingham

Key Words: fault trees, binary decision diagrams, dependencies, Petri nets

SUMMARY

The tutorial presents a methodology, known as D2T2, Dynamic

and Dependent Tree Theory, which overcomes some of the

limitations of conventional fault tree analysis which restrict the

ability of the approach to represent the performance of modern

engineering systems. These include:

i. Components having constant failure and repair

rates.

ii. All component failures being mutually

independent.

iii. Limited maintenance strategies to be

accommodated.

The D2T2 approach retains the fault tree structure to represent

the causality of the system failure in terms of its component

failures but the analysis process is changed to exploit the

features of Binary Decision Diagrams, Petri nets and Markov

models to overcome the limitations.

1. INTRODUCTION - FAULT TREE ANALYSIS

CHARACTERISTICS AND ASSUMPTIONS

Fault Tree Analysis (FTA) is the most commonly used method

in industry to analyse the reliability performance of systems.

This is particularly true when the system is safety critical and

its failure could result in injuries or fatalities to the workforce

and the general public. The method has its origins back in the

1960s and 1970s in the nuclear and aerospace industries [1, 2].

However, modern systems are designed, operated and

maintained very differently to those of the era when the method

was conceived. There are several features and assumptions of

the conventional FTA method, or its implementation in

commercial codes, which limits its ability to represent the

performance modern systems. These include:

i. all component failures being mutually

independent.

ii. components having constant failure and repair

rates.

iii. limited maintenance strategies to be represented.

It is common for modern systems to have features which violate

these assumptions rendering the results obtained from a fault

tree study unrepresentative of the system performance.

Independence between the basic events in the conventional

fault tree is a fundamental requirement of the fault tree

methodology. There are many aspects of system designs, their

operation or maintenance which can violate this assumption.

Component failure probability models, within the conventional

implementation, feature constant failure and repair rates. Many

systems have components whose condition is deteriorating over

time and their failure results from some form of wear-out. As

such their failure is not random and the failure rate is increasing

not constant. It can be argued that, since maintenance is not a

random process, the repair rate is never constant. Component

failure probabilities, Q(t), are commonly evaluated using the

following equations:

No Repair

 (1)

where λ is the constant failure rate.

Revealed Failures

This is unscheduled, reactive, maintenance which takes place

as soon as the component failure occurs. For components with

constant failure rate, λ, and constant repair rate, υ, the failure

probability at time t is given by:

 (2)

Unrevealed failure

When component failures are not revealed, tests are performed,

at intervals of θ, to establish their state. The failure probability

is then a function of λ, θ and the mean time to repair, τ. There

are several models that can then be employed to calculate the

average failure probability; a simple form is given in equation

(3):

 (3)

 Maintenance processes are far more sophisticated than the

three options represented in these equations. Examples include

servicing, component replacement prior to failure and

opportunistic maintenance.

This tutorial describes a framework (known as D2T2, Dynamic

and Dependent Tree Theory) that will overcome the limitations,

outlined above, whilst retaining the fault tree to express the

tetFtQ t   1)()(

 tetQ)(1)(



 












 




2
AVQ

system failure logic. The fundamental method employed for

analysing the fault trees in this framework is the Binary

Decision Diagram (BDD) method. It will be shown how to

calculate the system failure probability and failure intensity. It

builds on the material presented in the core tutorial ‘Fault Tree

Analysis’

2. BINARY DECISION DIAGRAMS

Binary Decision Diagrams provide a method for the

efficient and accurate quantification of fault trees [3-9]. An

example BDD is given in figure 1.

Figure 1 Binary Decision Diagram Structure

The entry point on the BDD is at the root vertex. The

intermediate nodes all correspond to components in the system

and two paths leave each node, a ‘1’ branch representing

component failure and a ‘0’ branch for component functioning.

To construct the diagram an ‘ordering’ must be assigned to the

basic events which specifies the order in which each component

is considered on the diagram. A path on the diagram starts at

the root vertex and progresses on a specific output branch from

each node which determines the status of that particular

component. As soon as the component conditions specified on

any path establish the system status then the path is terminated

with the appropriate terminal-0 or terminal-1 node for system

functioning or system failure respectively. The concise nature

of these diagrams is appealing from the mathematical

perspective and results in efficient and accurate analysis. From

the engineering perspective they are not documented and do not

develop the failure logic in any structured way. As such, it is

usually best to develop the system failure logic as a fault tree

and then convert to a BDD for analysis. Two construction

processes will be described. The first uses the logic function

obtained from the fault tree, the second manipulates equations

using a special ite (if-then-else) notation.

2.1 BDD construction using the system logic equations

Consider the fault tree illustrated in figure 2 as an example.

To convert this into a BDD the variables (basic events) are

placed in an order (A, B, C for this example).

TOP

GATE 1 GATE 2

A C B C

Figure 2 Simple Fault Tree

For the fault tree in figure 2 we get an expression for the

top event:

TOP= (A+C).(B+C) (4)

(Note: in the logic equations given throughout this tutorial ‘+’

will be used for OR and ‘.’ for AND).

 It does not matter what form this equation takes as long as it is

only a function of the basic events. The construction of the

BDD then starts with the first variable in the ordering, A. A is

substituted as TRUE (failed) and FALSE (works) into the logic

expression getting two new logic expressions to place on the

output ‘1’ branch and ‘0’ branch respectively. These two

functions are in turn developed by substituting in TRUE and

FALSE values for the second variable in the list, B. This

process is illustrated in figure 3 and, once completed, can be

shown to produce the BDD illustrated in figure 1.

B

1

1

1 0

A

C

0

1

1 0

(A+C).(B+C)

B+C C.(B+C)

B

C CC

1 0

ORDERING A, B, C

0

Figure 3 BDD Constructed from the System Logic Equation

B

1

1

1 0

A

C

0

1

1

0

0

Root Vertex

Event A fails

Event A works Intermediate

vertices

(Basic Events)

Terminal-1

(Top Event occurs)

Terminal-0

(Top Event non-

occurrence)

2.2 BDD construction using the ite form

Since nodes on a BDD always have two exit edges there is

a convenient mathematical form to express this. We consider

the basic event represented by a node, say X.

IF the event X occurs

THEN we pass down the ‘1-branch’ and consider the

Boolean function represented on the BDD connected to

this branch. (say f1).

ELSE (the event has not occurred) we pass down the ‘0-

branch’ and consider the Boolean function represented on

the BDD connected to this branch (say f2).

This can be written in a very concise way:

ite (X, f1 , f2)

As an example consider the root vertex of the BDD illustrated

in figure 3. This can be expressed as:

ite (A, f1 , f2)

where f1= B + C and f2 = C.(B + C).

The method described above to generate the BDD using a

top event equation does not lend itself to implementation on a

computer. However, with the ite notation used to express each

node on the BDD, mathematical rules can be established which

are applied in a bottom up fashion to the fault tree and deliver

the BDD form.

Initially each basic event in the fault tree is expressed in

the ite notation. So for any basic event X we have:

X = ite(X, 1 , 0)

When we encounter a gate of logic type  which has two inputs

G and H already expressed in ite form:

G = ite (X, g1, g2) and H = ite (Y, h1, h2)

then the following rules can be applied to get an ite expression

for the gate event. It depends on where the basic events X and

Y appear in the ordering. Either X < Y (X appears before Y) or

X=Y (X and Y are the same variable). Then either:

 G  H = ite(X, g1  H, g2  H) if X<Y (5a)

Or G  H = ite (X, g1  h1, g2  h2) if X=Y (5b)

 = AND (.) or OR (+)

Once an ite expression is formed for any gate it is

simplified as much as possible using the Boolean identities:

G + 1 = 1 (6a) G + 0 = G (6b)

 (6)

G . 1 = G (6c) G . 0 = 0 (6d)

Also ite (X, f1, f1) =f1

As an example, consider the fault tree illustrated in figure

2. We will use the rules expressed in equations 5 and 6 and an

ordering of the basic events A < B < C to convert this to a BDD.

First all basic events are put into ite form:

 ite (A, 1, 0) ite (B, 1, 0) ite (C, 1, 0)

Considering now GATE1:

GATE1=A+C

= ite(A,1 ,0)+ ite(C,1 ,0) [use equation 5a]

=ite(A, 1+ ite(C,1 ,0) , 0+ite(C,1 ,0)) [use equations 6a and

6b]

=ite(A, 1, ite(C,1 ,0))

Considering now GATE2:

GATE2=B+C

= ite(B,1 ,0)+ ite(C,1 ,0) [use equation 5a]

=ite(B, 1+ ite(C,1 ,0) , 0+ite(C,1 ,0)) [use equations 6a and

6b]

=ite(B, 1, ite(C,1 ,0))

Having now established expressions for GATE1 and

GATE 2, an expression for the top event can be formulated:

TOP=GATE1.GATE2

= ite(A, 1, ite(C,1 ,0)) . ite(B, 1, ite(C,1 ,0))

Using equation 5a, gives:

=ite(A, 1. ite(B, 1, ite(C,1 ,0)) , ite(C,1 ,0) .ite(B, 1, ite(C,1 ,0)))

Applying equation 6c to the 1-branch and equation 5a to the

term on the 0-branch of the above expression gives:

=ite(A, ite(B, 1, ite(C,1 ,0)) , ite(B, 1. ite(C,1 ,0) , ite(C,1 ,0).

ite(C,1 ,0)))

Simplifying

=ite(A, ite(B, 1, ite(C,1 ,0)) , ite(B, ite(C,1 ,0) , ite(C,1 ,0)))

=ite(A, ite(B, 1, ite(C,1 ,0)) , ite(C,1 ,0)) (7)

Equation 7 represents the ite expression for the final

BDD. It can be seen that the root vertex is A. On its ‘1-

branch’ it has the expression ite(B, 1, ite(C,1 ,0)) i.e. it is

connected to the vertex B which has 1 and ite(C,1 ,0) on its 1

and 0 branches respectively. The ‘0-branch’ of A is connected

to vertex C. This produces the BDD illustrated in figure 4.

The ite structure lends itself well to computer

implementation.

Figure 4 Minimal Cut Sets

2.3 BDD construction using the system logic equations

Whilst they are not needed in the quantification process,

the BDD can be used to develop the minimal cut sets of the

system. Consider the definition of a minimal cut set:

Cut Set: A list of component failed states which result in system

B

1

1

1 0

A

C

0

1

1

0

0

A.B

AC

C

failure

Minimal Cut Set: a cut set such that if any component failure

is removed it no longer results in system failure.

Figure 4 shows a simple example BDD structure. Each

path leading to a terminal-1 node contains the component

conditions required for system failure. If the working

component states are ignored and only the failed component

states listed then this corresponds to a cut set. For the BDD

shown in figure 4 there is a path to a terminal-1 passing through

nodes A and B on their 1-branches. So AB is a cut set. There

are two paths through the BDD to the second terminal-1 node.

The first passes through the 1-branch of A, the 0-branch of B

and the 1-branch of C, giving cut set AC. The second passes

through the 0-branch of A and the 1-branch of C, giving cut set

C. The cut sets are:

1. AB

2. AC

3. C

Since component A can be removed from cut set 2 and the

system remains in the failed state, this is not a minimal cut set.

Removing this from the list gives the minimal cut sets {AB},

{C}.

The above approach demonstrates the way minimal cut sets

can be obtained in a system assessment however, for a full

minimal cut set analysis, the efficient process would be to

construct a zero-suppressed BDD which encodes only minimal

cut sets. This is beyond the scope of this tutorial but details can

be found in refs 6, 8.

2.4 Variable Ordering Schemes

The sequence specified for the component events when

constructing the BDD structure plays a vital role in determining

the size, and therefore the efficiency of the BDD produced to

represent the logic function. Consider the fault tree given in

figure 5.

A

CB

G1

TOP

G2

DB

G3

Figure 5 Fault Tree to Investigate Ordering Schemes

 With ordering schemes of A<B<C<D and D<C<B<A the

resulting BDDs are illustrated in figures 6a and 6b respectively.

A

B

C

D

1

1 0

0

1

Figure 6a BBD for the Fault Tree in figure 5

Figure 6b BBD for the Fault Tree in figure 5

The BDD in figure 6a has 4 intermediate nodes and

produces 3 cut sets (all minimal). The BDD in figure 6b is not

such an efficient representation with 4 intermediate nodes and

5 cut sets (2 are non-minimal). For a problem of this size the

efficiency of the representation of the system failure logic is not

important. However, as the size of the system grows this can

be critical if a BDD is to be constructed. There is no universally

accepted way in which the variable ordering can be specified

and a number of approaches are possible [10]. The problem

then becomes: given the characteristics of the original fault tree,

select which strategy should be used to specify the variable

ordering. Neural networks have been used for this selection

process [11, 12].

Potential strategies to order the fault tree basic events are:

• ‘neighbourhood’ methods where the fault tree is traversed

in a systematic way and basic events listed as they are

encountered. One of the most common ordering methods

is in this category and is known as ‘top-down, left right’

where the tree is traversed from top to bottom and on each

level encountered from left to right listing the variables as

they are encountered for the first time. (see figure 7)

• ‘Structural importance’ methods allow nodes to be

selected from anywhere in the tree structure. Nodes are

D

A

1

0

1

C

B

1

allocated a ‘weighting’ which indicates their contribution

to the top event. Highest ‘weightings’ ordered first.

Figure 7 Top-down, Left-right Variable Ordering

2.5 Calculating the Top Event failure probability

It is with the system quantification that the BDD offers

advantages over the conventional fault tree analysis method.

Due to the way that the BDD is formed it has the characteristic

that all paths through the BDD are disjoint. Consider any

intermediate node X. A path will pass this node on either the

1-branch meaning that the event has occurred or the 0-branch

meaning that it has not. These conditions are mutually

exclusive and so anything which appears below the 1-branch,

and therefore contains the component failed state, will be

mutually exclusive to any path through the 0-branch. The

branching at all other variables below this one results in all

paths being disjoint.

The BDD therefore expresses the structure function in a

disjoint form. The system failure probability, QSYS, is then

simply the sum of the probability of all paths from the root node

to a terminal-1 node (accounting for the failure/success of all

components included in the path):


paths all

1)- terminal toiP(path SYSQ (8)

Assuming an ordering of A<C<B<D, the BDD for the

fault tree shown in figure 5 is given below (figure 8).

Figure 8 BDD for the Fault Tree in figure 5

The disjoint paths to a terminal-1 node are:

.B.DA 3

.B.DCA. 2

A.C.B .1

 (9)

Summing the probabilities of these paths gives:

dcbadbcba

dbadbcacbaSYS

qqqqqqqqq

qqqqqqqqqqQ



)1()1(
 (10)

The points to note about this process are:

1. the top event probability obtained is exact (approximations

are not needed,

2. the minimal cut sets were not required as an intermediate

step in the calculations.

This gives the BDD approach advantages in terms of both

accuracy and efficiency over the conventional fault tree

analysis approach.

2.6 Calculating the Top Event failure intensity

The system failure intensity, wsys, the rate at which the

system fails given that it was functioning at time t=0 can be

calculated using the expression:

)().()(
1

twqGtw i

n

i

iSYS 


 (11)

where wi is the component failure intensity and Gi(q) is the

Criticality Function (Birnbaum’s measure of importance [13]).

wsys, is sometimes referred to as the unconditional failure

intensity.

The Criticality Function, Gi(q), is the probability that the

system is in a critical state for component i such that the failure

of component i causes system failure. This can be evaluated

using equation 12.

),0(),1()(qQqQ
q

Q
qG isysisys

i

sys

i 



 (12)

where Qsys(1i,q) is the system failure probability with qi=1 and

Qsys(0i,q) is the system failure probability with qi=0.

3. DEPENDENCIES IN ENGINEERING SYSTEMS

Dependencies can occur between component failure events in

many ways. As an example, a situation frequently encountered

which introduces a dependency between its components is the

use of standby redundancy. Generators used to replace a

primary power source in the event that it fails is an example of

such a system. Parallel pumping systems are another example.

In standby systems, one component is operational and should it

fail a backup component is activated. This type of system can

 TOP EVENT

GATE 1

GATE 7GATE 6

GATE 3 GATE 5GATE 4

GATE 2A

AE

GFGK

H

B C

D

LEVEL 1

LEVEL 4

LEVEL 3

LEVEL 2

A

B, C

H, E, D

K, G, F

A<B<C<H<E<D<K<G<F

C

1

1

1 0

A

B

0

1

1

0

0
B

0 D

0

1

1

0

0

be classified in three ways depending on how the backup

component is considered to behave when it is non-operational.

These classifications are known as hot standby, warm standby

and cold standby.

Hot standby: components are considered as having the same

failure rate in standby as in operation.

Warm standby: components are considered as having a lower

failure rate in standby than in operation.

Cold standby: components are considered not to fail in

standby.

Warm and Cold standby systems produce a dependency

where the likelihood of failure of the standby component is

dependent upon the state of the primary component.

Other examples of situations which introduce dependencies

in engineering systems are shown in table 1.

When dependencies exist in a system, conventional fault tree

analysis is not an appropriate means to predict its failure

characteristics.

Type Description Example

Secondary

Failure When one component fails it increases

the load on a second component which

then experiences an increased failure

rate
Two pumps both operational and

sharing the load. Each pump has the

capability to deliver the full demand

should the other pump fail
Opportunistic

Maintenance A component fails which causes a

system shutdown or that requires

specialist equipment for the repair.

The opportunity is taken to do work on

a second component which has not

failed but is in a degraded state

Components on a circuit board.

Components in a sub-sea production

module

Common

Cause When one characteristic (eg materials,

manufacturing, location, operation,

installation maintenance) causes the

degraded performance in several

components

Incorrect maintenance done on

several identical sensors

Impact breaks the circuit on cables

routed in the same way to different

redundant channels
Queueing Failed components all needing the same

maintenance resource are queued. Then

repaired in priority order
Limited number of maintenance

teams, equipment or spares

Table 1 Dependency types

4. MODELLING DEPENDENCIES

Two methods are considered for calculating the probability of

systems which feature dependencies: Petri nets and Markov

models. Petri nets are the most general of the two methods and

can solve all situations that Markov models can solve and more

beyond. However, in certain situations Markov can provide a

more efficient solution than Petri nets and so the method has

been incorporated for these situations. It is expected that most

situations that involve complexities or dependencies in the

system model will be solved using a Petri net.

4.1 Markov Analysis

A Markov model comprises two elements: nodes and

transitions [14-16]. For system failure models, the nodes

represent the possible states of the system. This is the complete

set of mutually exclusive states in which a system can reside.

The states are usually described by defining which components

are working or failed. Transitions between states then represent

component failures and repairs. Following the formulation of a

Markov model its analysis will yield the probability of being in

any of the states. The system failure probability is then

determined by summing the probabilities of residing in those

states which represent a system failure condition.

For the basic Markov approach to be applicable the system

must be characterized by a lack of memory, that is, the future

states of the system are independent of all past states except the

immediately preceding one. So the future behaviour depends

only on its present state, not the history of what has happened

in the past. This is represented by the equation 13 where 𝑋𝑡 is a

random variable representing the state in which the system

resides at time t.

𝑃(𝑋𝑡+d𝑡 = 𝑘 | 𝑋𝑡 = 𝑗, 𝑋𝑡−d𝑡 = 𝑖, 𝑋𝑡−2d𝑡 = ℎ, … , 𝑋0 = 𝑎)

 = 𝑃(𝑋𝑡+d𝑡 = 𝑘| 𝑋𝑡 = 𝑗) (13)

Also, the system behaviour must not vary with time. The

probability of making a transition from one state to another

must be constant. This type of process is called stationary or

homogenous. If the transition probabilities are functions of time

then the process is not stationary and is known as non-

Markovian.

With the lack-of-memory property, the likelihood of a

component failure is only dependent on the fact that it is

currently working. It does not matter that it may have been

perfectly reliable up to this time or that it may have failed

several times before.

The homogenous property means that the transitions between

states are not dependent on time. They are, therefore, governed

by a constant rate, and times between transitions are governed

by the exponential distribution.

The first stage of the Markov analysis is to draw the state

transition diagram. This takes the form of a directed graph

where each node represents one of the discrete system states,

and, for continuous time Markov models, the edges indicate the

transition frequencies between the states in the direction

indicated by an arrow drawn on the edge.

4.1.1 Example – Single-Component Failure/Repair Process

As an example consider the simple case of a single

repairable component. The component undergoes an

alternating sequence of failure and repair with constant rates.

The component can exist in one of two states, working or

failed. The state transition diagram for this situation is given

in figure 9.

Figure 9. Repairable Component State Transition Diagram

The component can be considered to start in the working state

at time t = 0. Transition from the working state, 1, to the failed

state, 2, occurs with rate λ. Failure is immediately revealed and

transition back to the working state, the repair process, occurs

with rate v.

Let 𝑃𝑤(𝑡) denote the probability of the component working

at time t and 𝑃𝑓(𝑡) the probability of the component being in

the failed state at t. Differential equations relating these

probabilities can be derived directly from the state transition

diagram by considering the following rule for each state:

d𝑃state

d𝑡
= (rate of entering state) − (rate of leaving state)

 (14)

Therefore:

d𝑃𝑤(𝑡)

d𝑡
= −𝜆𝑃𝑤(𝑡) + 𝑣𝑃𝑓(𝑡) (15)

d𝑃𝑓(𝑡)

d𝑡
= 𝜆𝑃𝑤(𝑡) − 𝑣𝑃𝑓(𝑡) (16)

In matrix form this is:

 [�̇�𝑤(𝑡), �̇�𝑓(𝑡)] = [𝑃𝑤(𝑡), 𝑃𝑓(𝑡)] [
−𝜆 𝜆
𝑣 −𝑣

]

 (17)

i.e. �̇� = 𝑷 𝐀 (18)

where A is the state transition matrix.

4.1.2 General Markov State Transition Model Construction

The two-state Markov model representing a single component

described in the previous section is the simplest model possible.

The method is more commonly used to model more complex

systems comprising several components. States on the Markov

model are required to be mutually exclusive and exhaustive.

That is, they must be non-overlapping and represent every

possible state in which the system can reside. A possible way

to generate the system states is to identify the functionality or

failure mode for each component in the system and list all

possible combinations. Sometimes it is easy to write down all

possible states; for example, for a system with two components

which either work or fail, the Markov state transition diagram

is show in figure 10. For components A and B, either both

components work, state 1, or both components fail, state 4, or

there are two ways in which one component works and one

fails, states 2 and 3. The transitions rates 𝜆A, 𝜆B and repair rates

𝑣A, 𝑣B are incorporated on the diagram.

Figure 10. Two-Component Markov Model

The state transition matrix can be formulated directly from the

transition diagram using the following rules:

(a) the dimensions of the matrix are equal to the number

of states in the model;

(b) an off-diagonal element in row i column j represents

the transition rate from state i to state j;

(c) a diagonal element row i, column i is the transition rate

out of state i (always negative). (i.e. all rows sum to

zero)

Using these rules to form the state transition matrix for the

two-component system whose Markov diagram is illustrated in

figure 10 gives:

 𝐀 = [

−(𝜆A + 𝜆B) 𝜆A 𝜆B 0
𝑣A −(𝑣A + 𝜆B) 0 𝜆B

𝑣B 0 −(𝑣B + 𝜆A) 𝜆A

0 𝑣B 𝑣A −(𝑣A + 𝑣B)

]

 (19)

with initial conditions:

𝑃1(0) = 1.0, 𝑃2(0) = 𝑃3(0) = 𝑃4(0) = 0.0

4.2 Petri Nets

The Petri net is an alternative approach to Markov models for

solving State-Space problems. It has been used to represent the

dynamic processes in ‘systems’ occurring in science,

engineering and business and was developed by Petri [17] in

1963.

A Petri Net [18] is a graphical model having fundamental

elements: places, transitions, arcs and tokens. A place

represents a condition or event in the system and is illustrated

by a circle. A token, denoted by a dot, is located in a place to

represent the existence of that condition. A transition allows the

tokens to move between places in the model which represents

the dynamic changes in condition of the system. The transition

appears as a rectangle on the graph. Arcs are used to connect

input places to transitions and transitions to output places. A

number, known as the multiplicity, can be associated with any

arc. If no multiplicity is stated then it has a default value of 1.

The state of the system at any time in the simulation is

characterised by the marking of the net which records the

number of tokens residing in each place. A small example Petri

net is shown in figure 11.

There are rules which govern the way that transitions ‘fire’ to

move tokens around the network. In order for a transition to

fire it must first be enabled. A transition is enabled when all of

its input places contain at least the number of tokens as the

multiplicity of the connecting arc. The transition has an

associated time, specified by a value or a distribution. After a

time delay specified or sampled from the appropriate

distribution, the transition fires and removes the multiplicity of

tokens from the input places and deposits the multiplicity of

tokens to the output places. This is illustrated by the transition

D1 for the Petri net at the top of figure 11.

Figure 11. Simple Petri Net Transition Firing Process with

Arc Multiplicities and an Inhibitor Arc.

Another feature of the basic Petri Net representation is the

inhibitor arc which is used to prevent a transition from firing.

As shown in figure 12, it appears on the graph as an arc (with

associated multiplicity) with a round end connecting a place to

a transition. When the arc input place contains at least the

multiplicity of tokens of the arc the transition is inhibited and

will not fire.

Figure 12. Inhibitor Arc

The solution of the Petri net is obtained using Monte Carlo

simulation [19]. This performs a large number of model

simulations deriving the times at which the transitions occur

by taking random samples from their associated governing

distributions. For each simulation the durations of residing in

places, representing the system key performance parameters or

the number of times the key places are entered, are recorded.

In this way, distributions of the residence times, or the number

of occurrences of these system states, can be established. It is

common to use the averages of these distributions to judge the

system performance.

The Petri nets used in the system modelling can extend the

commonly used transition types to enhance the efficiency of

the modelling capability.

4.2.1 Special Transitions

The enabling and firing processes for the newly defined

transition types [20] are the same as those for the standard

transitions used in the traditional Petri net method. However,

the transitions also contain properties to execute additional

tasks concisely.

 Periodic transition: This transition fires only when the

system time is at a specified value. It can be used to

represent the inspection process where the condition of an

element is revealed through inspection performed at

regular intervals.

 Reset transition: This transition resets the marking of

specified places in the Petri net to some desired state. It

has an associated list of places and the number of tokens

that they will contain after the reset. Its use is in initialising

the relevant Petri net places when actions such as a

renewal are performed.

 Conditional transition: This transition type enables the

firing time distribution to be dependent upon the number

of tokens residing in another place on the network. A

dashed line links this place to the transition. This enables

degradation times to be linked to the number of prior

interventions that have been performed.

In the stochastic models which will link the degradation and

maintenance processes the transition times between the states

must be specified. These are usually obtained from historic

data collected to monitor the performance of this system or

similar systems. Data for the times to any event occurrences

are then used to define a statistical distribution which represents

the transition times. It is possible to use any statistical

distribution in this process, however, common choices for

reliability type problems are the exponential, Weibull and

lognormal distributions.

4.3 Dependency Modelling

 Whichever of the methods, Markov or Petri net, is used to

address the dependencies, problems can be experienced if it is

used to model the whole system. With Markov models there

can be a state space explosion where the number of states grows

exponentially with the number of components in the system.

For a Petri net solved using Monte Carlo simulation, it can take

substantial computer resources to achieve convergence for

systems whose failure is rare.

 Markov or Petri net models for the whole system also lack the

causality structure of fault trees making peer review and

auditing of the models difficult.

5. D2T2 MODELLING REQUIREMENTS

The approach taken in the Dynamic and Dependent Tree

Theory (D2T2) modelling framework, which overcomes the

limitations of conventional fault tree analysis and retains the

fault tree structure to represent the failure, is shown in Figure

13. The objective is to perform the analysis efficiently which

means that:

i. the dependency models are minimised containing

only those events which are mutually dependent.

(Rather than sections of the fault tree).

ii. the sizes of the BDDs are also minimised by using

effective variable ordering and modularisation

approaches.

Figure 13 D2T2 analysis framework

For a conventional fault tree analysis the input data will specify

the structure of the fault tree along with the failure/repair

characteristics for the components. For the D2T2 modelling

framework, the fault tree structure file remains the same. The

component failure/repair models are no longer limited to

exponential failure time and repair time distributions. Any

distribution can be accommodated for the state transition times.

As shown in figure 13, these two files are supplemented by a

third file which defines any dependencies between events and

the models, either Markov or Petri net, which represent them.

 The analysis then proceeds to identify the smallest modules

that are independent of the rest of the system structure for

analysis by either BDD, Petri net or Markov approaches. This

part is achieved through the modularisation described below.

The BDD, Petri net and Markov modelling solutions have been

described in sections 2, 4.1 and 4.2 respectively. The results of

these are integrated as described in section 7 below. The

integration of the results will deliver the system failure

probability or frequency.

6. FAULT TREE MODULARISATION

 When the basic events in the fault tree are independent then

there are two very effective approaches to finding independent

modules of the tree. The first was used in the Faunet code from

Riso [21], the second is a linear time algorithm which

systematically transverses the fault tree [22]. Whilst very

effective at reducing the complexity of the problem when the

basic events are independent they do not provide the smallest

possible independent modules. These approaches have been

revised to accommodate the dependencies and are presented

below. For an effective reduction in the problem, to achieve

objective ii in section 5, they are applied one after the other.

Prior to their application dependency groups are identified.

These are groups of components which may experience at least

one dependency between them but are mutually independent

from all other component failures in the fault tree.

 6.1 Fault Tree Factorisation

This approach repeatedly applies three operations until they

can be no-longer applied. The operations are:

i. Contraction

Subsequent gates of the same type are contracted into a

single gate

ii. Factorisation

Identifies factors, expressed as groups of events that

always occur together in the same gate type. The factors

can be any number of events if they satisfy the following:

- All events in the group are independent and

either initiators or enablers [23].

- All events in the group feature a

dependency and contain all events in the

same dependency group.

iii. Extraction

Restructures fault tree structures where a repeated event

can be extracted, as shown in Figure 14.

Basic Structure of the Code

Split into an
integrated suite of
PN and BDD codes

Petri net Analysis

code

Petri Net

files

Fault Tree

file

Component

Data file

Dependencies

file

Results
Top Event Probability

Top Event Intensity

Modularisation
Split the problem into an

embedded sequence of

independent modules

consisting of: PNs,

Markov Models and BDDs

PN Modules
Generate Petri Nets for

component and

dependency models

Extract the results from the

complexity / dependency

models ready to insert into the

BDD analysis

Create BDDs
Convert the independent

FT modules to BDDs
BDD files BDD Analysis

code

Markov Modules
Generate Markov

Diagrams for component

and dependency models

Markov files
Markov Analysis

codeCausality information

Complexity
information

Component failure and

repair information

Dependency Models

Figure 14 Extraction operation

For those independent factors identified in step ii their

probabilities, Qcfi, and frequencies, wcfi, are calculated, in terms

if element probabilities and intensities, qj, wj using:

For OR combinations Cfi= x1+x2+….+ xn

𝑄𝑐𝑓𝑖
= 1 − ∏(1 − 𝑞𝑥𝑗

𝑛

𝑗=1

) (20)

 In the event that the factor contains only initiators:

𝑤𝑐𝑓𝑖
= ∑ 𝑤𝑗

𝑛

𝑗=1

∏(1 − 𝑞𝑥𝑘

𝑛

𝑘=1
𝑘≠𝑗

) (21)

For AND combinations Cfi= x1.x2.….. xn

𝑄𝑐𝑓𝑖
= ∏ 𝑞𝑥𝑗

𝑛

𝑗=1

 (22)

 In the event that the factor contains only initiators:

𝑤𝑐𝑓𝑖
= ∑ 𝑤𝑗

𝑛

𝑗=1
𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑜𝑟𝑠

∏ 𝑞𝑥𝑘

𝑛

𝑘=1
𝑘≠𝑗

 (23)

For factors with dependencies that are solved using Markov or

Petri net models, the required factor probabilities and intensities

are extracted directly from the model.

6.2 Linear-time modularisation

Attempts are then made to further simplify the fault tree

structure which remains after applying the factorisation

modularisation. Each basic event appearing in a dependency

group is then replaced in the fault tree structure with its

dependency group label. The linear time algorithm is then

applied as described in [22] and may result in the fault tree

being broken down into further independent modules.

7. D2T2

 DYNAMIC AND DEPENDENT FAULT TREE

ANALYSIS

In utilising the BDD method, it is possible to exploit the fact

that the paths are all mutually disjoint to integrate the results

from the dependency models into the fault tree structures. The

disjoint nature of the paths means that it is only necessary to

deal with dependencies between the events occurring on any

path to a terminal-1 and not the dependencies occurring

between the paths. The system failure probability is then the

sum of the probability of the paths to a terminal-1, which is a

function of the probability of the event combinations in any

dependency group k, 𝐷𝑝𝑎𝑡ℎ𝑗
𝑘 , and the independent component

failures, 𝐼𝑝𝑎𝑡ℎ𝑗 , evaluated using equation 24.

In order to evaluate the system failure intensity, the probability

equation, (24) is used to evaluate the criticality function which

is used as expressed in equation 11.

8. CASE STUDY – PLANT COOLING SYSTEM

The above method is demonstrated through its application to a

plant cooling system. The system is illustrated in figure 15.

Figure 15 Plant Cooling System

The cooling system features a primary, normally operational,

cooling sub-system, comprising a tank (T1), pumps (P1 and P2)

and heat exchanger (Hx1). Both pumps normally function but

M

R1

COMP

PRESSURE VESSEL

TANK 2
(T2)

TANK 1
(T1)

P1

P2

P3

HEAT EXCHANGER
(HX1)

HEAT EXCHANGER
(HX2) VALVE

(V1)

RELAY
(R1)

MOTOR
(M)

FAN
(F)

S1

S2

R2

𝑄
𝑆𝑌𝑆

= ∑ [𝑃(𝐼𝑝𝑎𝑡ℎ
𝑗
). ∏ 𝑃(𝐷𝑝𝑎𝑡ℎ

𝑗
𝑘

𝑛𝑑𝑒𝑝

𝑘=1

)]

𝑛𝑝𝑎𝑡ℎ

𝑗=0

 (24)

should either fail, the coolant to the heat exchanger can be

supplied by a single pump.

The temperature of the pressure vessel is monitored by a sub-

system featuring two temperature sensors (S1 and S2). The

signals from the sensors feed into a computer (Comp) and

should either sensor indicate a higher than expected vessel

temperature, the computer will activate an alternative means of

cooling. This is achieved by de-energising an output which

removes power from the two relays (R1 and R2).

When R1 de-energises its contacts close and powers the motor

for the secondary cooling fan system. R2 acts similarly to open

motorized valve V1 and power pump P3 in the secondary

cooling water system which draws water from tank (T2) and

delivers it to heat exchanger (Hx2).

The valve V1 and pumps P1, P2 and P3 all have a common

power supply, PoW.

There are three dependencies which feature in the system:

i. Pumps P1 & P2 – if one fails it puts increased load

on the other (and increases its failure rate).

ii. Heat Exchangers Hx1 & Hx2 – since specialist

equipment is needed when one needs replacement,

the opportunity is taken to replace both.

iii. Pump P3 - can fail to start when the demand occurs

(P3S) and fail once running to provide cooling for

the required time (P3R). The two events P3S and

P3R are clearly dependent.

Failure and repair data for the basic events in the fault tree,

accounting for the dependent failures, is given in table 2.

There is an additional complexity. As can be seen from table

2, the motor does not have constant failure and repair rates. Its

failure times are governed by a Weibull distribution and its

repair times are given by a lognormal distribution.

The dependencies and the complexity are solved using

appropriate Petri nets and Markov models as discussed in the

next section.

8.1 Complexity and dependency models

8.1.1 Motor failure model

The motor has failure times from a Weibull distribution,

Weib(β=1.5, η=1200 hours), and repair times distributed by

LogN(μ=24.0 hours, σ=4.8 hours). This is solved using a very

simple Petri net as shown in Figure 16 and the results shown in

table 3.

Table 2 Component failure and repair data.

Figure 16 Motor failure and repair Petri net

Table 3 Quantification results from the Motor Petri net in

figure 16

Event

Code

Description I / E D-

Group

Failure

rate

(/hour)

Mean

time to

repair

(hours)

Inspect

interval

(hours)

q w

P1,

P2

Pumps fail

when running

I D1 Failure rate 𝜆1 = 2 × 10−5 /h under normal load

 𝜆2 = 5 × 10−3/h under full load

Repair rate ν= 0.041667 (MTTF = 24hrs)

T1 Water Supply

failure

I 1x10-5 24 2.4x10-5 9.99976

x10-6

Hx1 Heat

Exchanger

fails

I D2 Failure time = W(β=2.5, η=30,000h)

The system is shut down when the repair is

undertaken

PoW Power supply

failure

I 1x10-4 10 1x10-3 9.99

x10-5

S1,

S2

Sensor fails

to detect a

high

temperature

E 5x10-4 5 730 0.185

Comp Computer

fails to

process

sensor signals

E 5x10-5 5 2190 0.055

R1 /

R2

Relay

contacts fail

to close

E 1x10-5 24 2190 0.0112

Fan Fan fails E 2x10-6 8 2190 2.206

x10-3

Motor Fan motor

fails

E C1 Failure time = W(β=1.5, η=12,000h)

Repair time = LogN(μ=24hrs, σ=4.8h)

P3S Pump fails to

activate

E D3 0.05

P3R Pump fails

when running

E D3 1x10-4

T2 Water Supply

failure

E 1x10-5 24 2190 0.0112

Hx2 Heat

Exchanger

fails

E D2 Failure time = W(β=2.5, η=30,000h)

The system is shut down when the repair is

undertaken

V1 Valve fails to

open

E 5x10-5 30 2190 0.05625

Motor
Working

Motor
Failed

W(β,η)

LN(μ,σ)

STATE Probability Frequency (per

hour)

Motor

Failed

0.0058389642 8.686868 x 10-5

8.1.2 Hx1 and Hx2 failure dependency Petri net model

The Petri net used to model the maintenance repair

dependency between the two heat exchangers is shown in figure

17.

Figure 17 Heat exchanger dependency Petri net model

The results of simulating the Petri net model are:

State Probabilities:

P(Hx1W, Hx2W)=0.98646987828725829

P(Hx1W, Hx2F)=0.0135301

P(Hx1F, Hx2F)=0.0

P(Hx1F)=0.0

P(Hx2F| Hx1F)=0.0

P(Hx2F| Hx1W)= 0.0135301

 (25)

State Failure Intensities

w(Hx1F, Hx2_unrevealed)=3.1709792 x 10-07 /hour

w(Hx1F, Hx2W)=1.8161063 x 10-05 /hour

w(Hx1F)=1.8478161 x 10-05 /hour

8.1.3 Pumps P1 and P2 failure Markov model

 Since pumps P1 and P2 in the primary cooling circuit have

constant failure and repair rates, both Petri nets and Markov

methods could be used to model their dependency. The Markov

method is selected in this case since it offers a more efficient

solution.

The Markov state transition diagram is shown in figure 18.

Figure 18 Markov model of the P1 and P2 dependency

The results from the Markov analysis are shown in table 4.

Table 4 results from the Markov model shown in figure 18

8.1.4 Dependent failure modes for pump P3

The probabilities of the two dependent failure modes for

pump P3, failure to start, P3S, and failure once running, P3R,

can be used to deliver the failure probability of P3 to work for

the required period using:

𝑞𝑃3 = 𝑞𝑃3𝑆 + (1.0 − 𝑞𝑃3𝑆)𝜆𝑃3𝑅. 𝑡𝑝𝑒𝑟𝑖𝑜𝑑 (26)

 = 0.05 + 0.95 × 10−4 × 30 = 0.05285

8.2 Failure of the Plant Cooling System Fault Tree

The fault tree for the pressure vessel cooling system failure is

shown in figure 19. The branches of the fault tree are

terminated in basic events, component failure events listed in

table 2. All events on the left-hand branch of the fault tree

represent the causes of failure of the primary cooling system.

These are all initiators [23]. Events on all other branches,

representing the failure of safety systems to respond, are

enablers.

Figure 19 Pressure Vessel Cooling System Failure Fault Tree

8.3 Fault Tree modularisation

8.3.1 Fault Tree Factorisation

Applying the Factorisation algorithm, shown in section 6.1,

to the fault tree in figure 19 is accomplished in the following

steps:

Contraction 1

The OR gates which lead into OR gates for both the ‘primary

cooling system fails’ and ‘auxiliary cooling system fails’ events

are contracted into a single OR gate structure. The resultant

fault tree is shown in figure 20.

Hx1 Working Hx1 Failed
W(β,η)

Hx2 Workng

Hx2 Failed

unrevealed

W(β,η)

Hx2 Failed

revealed

No

inspection

θ

0.01

0.0

0.0

0.0

inspection

Hx1 Fails when

Hx2 unrevealed

0.0

0.0

λ1 λ2

λ1 λ2

P1F

P2F

P1F

P2W

P1W

P2W

P1F

P2W

0.5ν

ν

ν

1

2

3

4

State

Number

State State

Probability

Intensity Expression State Intensity

1 0.99743518

2 0.00042747

3 0.00042747

4 0.00170988

Pressure Vessel
Cooling Fails

AND

Primary Cooling
System Fails

Auxiliary Cooling
System Fails

OR

T1 Hx1

OROR

PoWAND

P1 P2

OR

High Temperature
Detection System Fails

Secondary Cooling
System Fails

Fan
System Fails

OR

AND

S1 S2

Comp

OR OR

R1 Fan Motor PoW PoW R2 P3S T2Hx2P3R V1

Figure 20 Contracted fault tree structure

Factorisation 1

Following the rules for the identification of factors given in

section 6.1, the following factors can be identified in the fault

tree in figure 20.

𝐶𝑓1 = 𝑃1. 𝑃2 (dependency group D1 – initiators)

𝐶𝑓2 = 𝑆1. 𝑆2 (independent enablers)

𝐶𝑓3 = 𝐶𝑜𝑚𝑝 + 𝑅1 + 𝐹𝑎𝑛 + 𝑀𝑜𝑡𝑜𝑟 + 𝑅2 + 𝑇2 + 𝑉1
 (independent enablers)

𝐶𝑓4 = 𝑃3𝑆 + 𝑃3𝑅 (dependency group D3 – enablers)

 (27)

Substituting these factors into the fault tree reduces

it to that shown in figure 21.

Figure 21 Factorized fault tree

Extraction 1

The fault tree in figure 21 can be seen to have a repeated basic

event representing the power failure to the pumps and valve,

PoW. Restructuring the fault tree as shown in the top diagram

in figure 14, produces the structure shown in figure 22.

Figure 22 Fault Tree after Extraction 1 stage

The three stages are now applied for a second time. Since the

fault tree is now already in an alternating sequence of AND and

OR gates the application of Contraction 2 does not change

anything.

Factorise 2

This second application of factorization picks out a second list

of factors:

𝐶𝑓5 = 𝐶𝑓1 + 𝑇1 (initiator) (28)

𝐶𝑓6 = 𝐶𝑓2 + 𝐶𝑓3 + 𝐶𝑓4 (enabler)

Substituting these factors into the fault tree structure gives the

fault tree illustrated in figure 23. This is the minimal fault tree

structure as far as the factorisation algorithm is concerned.

This has significantly reduced the complexity of the fault tree

structure from the original tree, shown in figure 19 which had:

19 basic events, 10 gates

34 min cut sets (1 order 1, 20 order 2, 12 order 3 and 1 order 4)

to the tree in figure 23 which has:

5 basic events, 4 gates

5 min cut sets (1 order 1, 4 order 2)

Figure 23 Final fault tree from the factorization algorithm

8.3.2 Linear Time Modularisation Algorithm

Application of the linear time algorithm of Rauzy and Dutuit

[22] reduces the tree still further. It identifies gates top event

and gate G1 in the fault tree in figure 23 to be modules. These

modules are shown in figure 24. These are the fault trees which

can be solved using the BDD method (or as a simple factor Cf7

= PoW + G1).

Pressure Vessel
Cooling Fails

AND

Primary Cooling
System Fails

OR

T1 Hx1PoWAND

P1 P2

Auxiliary Cooling
System Fails

OR

AND

S1 S2

Comp R1 Fan Motor PoW R2 P3S T2Hx2P3R V1

Pressure Vessel
Cooling Fails

AND

OR

Hx1PoW

OR

Cf2 Cf3 Cf4 PoWCf1 T1 Hx2

Pressure Vessel
Cooling Fails

AND

OR

Hx1

PoW

OR

Cf2 Cf3 Cf4Cf1 T1 Hx2

OR

Pressure Vessel
Cooling Fails

AND (G1)

OR

Hx1

PoW

OR

Cf6Cf5 Hx2

OR

Figure 24 final fault tree independent modules

8.4 Quantifying the independent basic events and factors

The quantification of the fault tree requires the probability of

the independent events and factors to be calculated. For those

basic events that are not involved in any dependency or

complexity models, then equations 1-3 are used, as appropriate.

The results are provided in table 2.

The modularisation process identified 6 independent factors.

The probability of these are calculated using the appropriate

equations 20, 22. Factor Cf2 is an AND combination of

independent basic events, S1 and S2, and so equation 22 is used.

Cf3, Cf5 and Cf6 are OR combinations of independent events

and so equation 20 is appropriate. It should be noted that motor

is a basic event input to Cf3 and, although this is independent

from the other inputs to Cf3, it features a complexity which

means its likelihood is evaluated using the Petri net in figure

16. The probability of Cf1, which is the probability that P1 and

P2 both fail, is extracted from the Markov model shown in

figure 18. The final factor, Cf4, also comprised of dependent

events, in this case P3R and P3S. The probability of P3 failing

to function on demand and continue for the required duration is

given by equation 26.

A list of the probabilities of factors Cf1-Cf6 are provided in

table 5.

Table 5 factor probabilities

8.5 Analysis of the Fault Tree

8.5.1 Top Event failure probability

 The fault tree which needs to be analysed is that illustrated

in figure 24 with the top event G1. It contains independent

events Cf5 and Cf6 along with dependent events Hx1 and Hx2.

To perform the analysis of this fault tree first requires its

conversion to a BDD. An ordering is therefore placed on the

basic events, Cf5 < Hx1 < Cf6 < Hx2. This produces the BDD

shown in figure 25.

The quantification of the BDD probability requires that the

dependency between Hx1 and Hx2 is accounted for when

evaluating equation 24. There are 4 paths through the BDD, as

listed in table 6, the probability of each of the paths is evaluated,

giving:

𝑄𝑝𝑎𝑡ℎ1 = 𝑃(𝐶𝑓51). 𝑃(𝐶𝑓61) = 0.0010830 (29)

𝑄𝑝𝑎𝑡ℎ2 = 𝑃(𝐶𝑓51). (1 − 𝑃(𝐶𝑓61)). 𝑃(𝐻𝑥21) = 8.8052957e-06 (30)

𝑄𝑝𝑎𝑡ℎ3 = (1 − 𝑃(𝐶𝑓51)). 𝑃(𝐶𝑓61). 𝑃(𝐻𝑥11)=0.0 (31)

𝑄𝑝𝑎𝑡ℎ4 = (1 − 𝑃(𝐶𝑓51)). (1 − 𝑃(𝐶𝑓61)). 𝑃(𝐻𝑥11, 𝐻𝑥21) = 0.0 (32)

Table 6 paths through the BDD in figure 25

Figure 25 BDD for the fault tree with top event G1

 Summing equations 29 to 32 gives the probability of event

G1 as 0.00109175.

Finally, the probability that the pressure vessel temperature

protection system fails is calculated from:

P(Top) = P(G1 + PoW) = 0.0020906577 (33)

8.5.2 Top Event failure intensity

For the top event failure intensity to be evaluated then the

criticality function for each initiating event (P1, P2, PoW, Hx1

and T1) is calculated using equations 11 and 12. The results

obtained are shown in table 7.

AND

OR

Hx1

OR

Cf6Cf5 Hx2

G1Pressure Vessel
Cooling Fails

G1PoW

OR

Event

Code

Description I / E D-

Group

q

Cf1 P1. P2 I D1 0.00170988

Cf2 S1. S2 E 0.00034225

Cf3 Comp +

R1 + Fan +

Motor +

R2 + T2 +

V1

E 0.6035094

Cf4 P3S + P3R E D3 0.05285

Cf5 Cf1 + T1 E 0.0017338

Cf6 Cf2 + Cf3

+ Cf4

E 0.6246519

G1 BDD I

0.001091749

Cf7 PoW + G1 0.0020906577

j pathj Ipathj

1 Cf51 , Cf61 Cf51 , Cf61

2 Cf51 , Cf60 , Hx21 Cf51 , Cf60 Hx21

3 Cf50 , Hx11 , Cf61 Cf50 ,Cf61 Hx11

4 Cf50 , Hx11 , Cf60 , Hx21 Cf50 , Cf60 Hx11 , Hx21

Cf5

Cf6

Hx2

1 0

Hx1

Table 7 calculating the system failure intensity

 Summing the intensities over the initiators gives the failure

rate of the pressure vessel cooling system as 1.342632 x 10-4 /

hour.

9. CONCLUSIONS

• Dynamic and Dependent Tree Theory, D2T2, enables the

evaluation of fault trees which are not limited by the

restrictions which apply to conventional fault trees solved

by traditional Kinetic Tree Theory.

• The analysis algorithm utilises BDDs, Petri Nets and

Markov Models.

• Retains the familiar and popular fault tree causality

structure.

• The Petri net and Markov models dedicated to solve the

complexities and dependencies are minimal in size.

• Modularisation of the fault tree minimises the size of the

BDD utilised in the system evaluation (and therefore the

number of paths).

10. REFERENCES

1. W.E. Vesely, ‘A Time Dependent Methodology for

Fault Tree Evaluation’, Nuclear Design and

Engineering, no. 13 (1970): 337-360.

2. Watson H.A., Launch Control Safety Study, Bell

Telephone Laboratories, Murray Hill, N.J. USA,

1961.Akers B, ‘Binary Decision Diagrams’, IEEE

Trans on Computers, 27(6), 509-516, 1978.

3. Bryant R, ‘Graph Based Algorithms for Boolean

Function Manipulation’, IEEE Trans on Computers,

35(8), 677-691, 1986.

4. Schneeweiss W., ‘Fault Tree Analysis Using Binary

Decision Diagrams’, IEEE Trans on Reliability, 34(5),

453-457, 1985.

5. Rauzy A, ‘New Approaches for Fault Tree Analysis’,

Reliability Engineering and System Safety, 05(59),

203-211, 1993.

6. Sinnamon R.M. and Andrews J.D., ‘Quantitative Fault

Tree Analysis Using Binary Decision Diagrams’,

European Journal of Automation, 30 (8), 1996, 1051-

1071.

7. Sinnamon R.M and Andrews J.D., ‘Improved

Efficiency in Qualitative Fault Tree Analysis’, Quality

and Reliability Engineering International, Vol 13,

1997, pp293-298.

8. Sinnamon R.M and Andrews J.D., ‘Improved

Accuracy in Quantitative Fault Tree Analysis’,

Quality and Reliability Engineering International,

Vol 13, 1997, pp285-292.

9. Bartlett L.M. and Andrews J.D, ‘An Ordering

Heuristic to Develop the Binary Decision Diagram

based on Structural Importance’, Reliability

Engineering and System Safety, Vol 72, 2001, pp31-

38.

10. Bartlett L.M. and Andrews J.D., ‘Efficient Basic

Event Ordering Schemes for Fault Tree Analysis’,

Quality and Reliability Engineering International,

Vol 15, No 2, 1999, pp95-103.

11. Bartlett L.M. and Andrews J.D, ‘Selecting an

Ordering Heuristic for the Fault Tree to Binary

Decision Diagram Conversion process using Neural

Networks’, IEEE Transactions on Reliability, Vol 51

No 3, Sept 2002, pp 344-349.

12. Z.W.Birnbaum, ‘On the importance of different

components in a multi-component system’,

Multivariate Analysis 11, P.R.Krishnaiah,

ed.,Academic Press, 1969

13. Andrews, J.D. and Moss, T.R, Reliability and Risk

Assessment, Second Edition, Professional

Engineering Publishers, Ltd, 2003.

14. O’Connor, P.D.T and Kleyner, A, Practical Reliability

Engineering, 5th Edition, Wiley, 2012.

15. Rausand M, Reliability of Safety-Critical Systems:

Theory and Applications, Wiley, 2014.

16. Elsayed, E., Reliability Engineering, 2nd Edition,

Wiley, 2012.

17. Petri, C.A., Fundamentals of a Theory of

Asynchronous Information Flow. Proc. of IFIP

Congress 62. Amsterdam: North Holland Publ.

Comp., 1963: p. 386-390.

18. Schneeweiss, W.G., Petri Nets for Reliability

Modelling, LiLoLe- Vrelag Publishing Company

Limited, 1999.

19. Rubinstein, R and Kroese, D, Simulation and the

Monte Carlo Method, 2nd Edition, Wiley, 2011.

20. Andrews, J., A Modelling Approach to Railway Track

Asset Management, Proceedings of the Institution of

Mechanical Engineers, Part F: Journal of Rail and

Rapid Transit, 2013. 227(1): p. 56-73.

21. Platz, O. and Olsen J. V. “FAUNET: A Program

Package for Evaluation of Fault Trees and Networks”,

Research Establishment Riso, Report No 348, DK-

4000 Roskilde, Denmark, Sept. 1976.

22. Dutuit, Y. and Rauzy, A. A Linear-Time Algorithm

to find Modules of Fault Trees, IEEE Trans.

Reliability, 45, No. 3, 1996.

Variable Q(var=F) Q(var=W) Gi(var) Gi (var) w

Hx1 1.152147238 x 10-5

T1 0.6300421 0.0020756 0.6279665 6.2795143 x 10-6

P1 0.5042367 0.1268205 0.3774162 8.3356331 x 10-6

P2 0.5042367 0.1268205 0.3774162 8.3356331 x 10-6

PoW 1.0 0.0010918 0.9989082 9.979093 x 10-5

 BIOGRAPHIES

John Andrews, Ph.D, FIMechE, CEng, MIMA, CMath,

MSaRS

Professor of Infrastructure Asset Management

Head of the Resilience Engineering Research Group

University of Nottingham

Faculty of Engineering,

University Park

Nottingham, NG7 2RD, England

email: john.andrews@nottingham.ac.uk

John Andrews is Professor of Infrastructure Asset Management

in the Faculty of Engineering at the University of Nottingham,

UK. He is also the Head of the Resilience Engineering

Research Group. He moved to Nottingham in 2009 having

previously worked for 20 years at Loughborough

University. The focus of his research has been on methods for

predicting system reliability and availability in terms of the

component failure probabilities and a representation of the

system structure. Much of his early work has concentrated on

the Fault Tree technique and the use of the Binary Decision

Diagrams (BDDs) as an efficient and accurate solution

method. More recently his main interest has been on modelling

the effects of maintenance in order to identify the optimal

strategy for asset management. He is the author of around 350

research papers on this topic and is joint author, with Bob Moss,

of a text book, Reliability and Risk Assessment, now in its

second edition, published by ASME. John was the founding

Editor of the Journal of Risk and Reliability and is a member of

the Editorial Boards for Reliability Engineering and System

Safety, and Quality and Reliability Engineering International.

Silvia Tolo, BSc, Ph.D

Research Fellow in Risk and Reliability Engineering

Resilience Engineering Research Group

University of Nottingham

Faculty of Engineering,

University Park

Nottingham, NG7 2RD, England

email: silvia.tolo@nottingham.ac.uk

Dr Silvia Tolo gained an M.Sc. in Energy and Nuclear

Engineering from the University of Bologna, and subsequently

collaborated with the Institute for Risk and Uncertainty at the

University of Liverpool, where she was awarded a PhD. She is

currently undertaking research within The Resilience

Engineering Research Group at the University of Nottingham

on the development of theoretical and computational tools for

the efficient modelling of complex systems.

