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Abstract 

 
A recent development in Fault Tree Analysis (FTA), known as Dynamic and Dependant Tree Theory 

(D2T2), accounts for dependencies between the basic events, making FTA more powerful.  The 

method uses an integrated combination of Binary Decision Diagrams (BDDs), Stochastic Petri Nets 

(SPN) and Markov models.  Current algorithms enable the prediction of the system failure probability 

and failure frequency.   

 

This paper proposes methods which extend the current capability of the D2T2 framework to calculate 

component importance measures.  Birnbaum’s measure of importance, the Criticality measure of 

importance, the Risk Achievement Worth (RAW) measure of importance and the Risk Reduction 

Worth (RRW) measure of importance are considered. This adds a vital ability to the framework  

enabling the influence that components have on system failure to be determined and the most 

effective means of improving system performance to be identified.  The algorithms for calculating 

each measure of importance are described and demonstrated using a pressure vessel cooling system.   

 

Keywords:  System failure modelling, Dependent failures, System unavailability assessment, Dynamic 

and Dependent tree theory 

 

1. Introduction 
 

Risk assessment is commonly performed on safety critical systems to ensure that their performance 

meets the required standard [1].   This involves calculating the likelihood or frequency that systems 

fail in critical modes which can kill or injure people.   Fault tree analysis is the most common method 

used by industry to perform this task.  Traditional Fault Tree Analysis (FTA), known as Kinetic Tree 

Theory (KTT), was derived by Vesely [2] in 1970 to assess the failure of engineering systems. The tree 

structure provides a clear visual representation of the causes of system failure in terms of basic 

events such as component failures, software failures and human errors.  Engineers are familiar with 

this form of causality diagram, which enables easy peer review and regulator assessment.  The 

subsequent two-stage analysis delivers the minimal cuts sets, i.e., the necessary and sufficient 

combinations of basic events which cause system failure, along with the system failure probability, 

the system failure frequency, and measures of importance.  Importance measures determine the 

contribution of each component or minimal cut set to system failure and provide a means to identify 

weaknesses that can be targeted to improve overall system performance [3-5].  Different importance 

measures consider different factors in their definition and can account for the vulnerability of the 

system to fail when a component fails (the inclusion of redundancy which needs several components 

to fail to cause the system failure), the frequency by which a component fails and the speed at which 

a repair back to the functioning condition can be achieved.   

 

One limitation of KTT is its requirement to employ approximations. If the fault tree structure 

produces a large number of minimal cut sets, it may not be possible to obtain them all, in which case, 

a culling approach is adopted to obtain the most significant combinations [6-7].  Approximations, 

such as the Rare Event Approximation or the Minimal Cut Set Upper Bound, are also used during the 
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quantification stage since the full inclusion-exclusion expansion cannot be evaluated [3]. The 

development of Binary Decision Diagram (BDD) methods in the 1990s and the subsequent research 

to efficiently convert the fault tree to the BDD, overcame this limitation enabling exact quantification 

to be performed [8-14].  

 

There are, however, additional limitations of KTT, including the necessary assumption of 

independence between the basic events, and, in many computer implementations, the requirement 

for constant component failure and repair rates.  The models which calculate the component failure 

probabilities, usually apply for components that are non-repairable, or experience revealed or 

unrevealed failures.  These are also very limited in their ability to represent the maintenance 

strategies employed for a system.  Increasing failure rates are encountered when components 

experience wear--out. Furthermore, when failure does occur, repair is not a random process and thus 

it could be questioned if repair rates can ever be considered constant.  The assumption of 

independence is extremely limiting and not appropriate for most modern engineering systems. 

Dependencies can occur in a variety of ways, for example, due to opportunistic maintenance, 

employing standby redundancy or considering common cause failures. 

 

These restrictions limit KTTs ability to model modern engineering systems effectively. Alternative 

approaches such as Markov models [15] or Stochastic Petri Nets (SPN) [16, 17] can be employed to 

overcome the assumptions.  Whilst these methods can accommodate dependencies and, for SPNs, 

non-constant failure and repair rates are possible, both can become computationally demanding for 

even relatively simple systems.  This is especially true for SPNs when modelling large systems whose 

failure event is rare.  The large simulation times required to get convergence in the results often 

makes the method impractical for real application.  Additionally, the tree structure is not retained 

and thus all the advantages of this causality form are lost.  Approaches which address these issues 

and retain the tree structure have been developed, the most advanced of these being Dynamic Fault 

Trees [18, 19]. This approach allows dependencies and complexities to be incorporated into the 

model through the use of a SPARE (for spare or standby components) or a SEQ (for a sequence of 

events) gate which are then analysed using a Markov model and the results substituted back into the 

fault tree.  However, the dependent events must all appear below a single gate.  As such, if the 

dependent events are not all below the same gate, as for example when dependencies occur due to 

the maintenance process, this approach cannot be used. 

 

In 2023 Andrews and Tolo [20] published the D2T2 methodology designed specifically to address 

these limitations. The methodology retains the tree structure and combines the use of BDDs, along 

with Markov and SPN models to analyse engineering systems featuring non-constant failure and 

repair rates, component dependencies, and complex maintenance strategies, as efficiently as 

possible. The methodology ensures that no matter how far apart the dependent events are in the 

tree structure, the dependency model features only these components. As such, the dependency 

models are minimal, maximising efficiency.  The methodology enables the calculation of both the 

system failure probability and the system failure frequency.  However, in order to obtain the full 

range of outputs, the methodology needs to be extended to calculate commonly used measures of 

importance.  This paper considers measures of component importance relating to the top event 

probability including Birnbaum’s measure of importance [21], the Criticality Measure of Importance 

[22], the Risk Achievement Worth (RAW) and the Risk Reduction Worth (RRW) [23].  
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Figure 1: The D2T2 Solution Process 

 

2. D2T2 Methodology 
 

In 2023, Andrews and Tolo proposed the D2T2 methodology.  It provides a holistic generalised 

approach to model systems with complexities including components with non-constant failure/repair 

rates, dependencies between component failures, complex maintenance processes, and event 

sequences.  The methodology retains the fault tree structure to provide a clear representation of the 

system failure causality and combines the use of the BDD analysis with Markov and SPNs to model 

dependencies and complexities as efficiently as possible.  

 

The methodology begins by manipulating the fault tree such that it can be reduced to a series of 

independent modules each of which can be solved using the appropriate approach.  The results 

obtained are then integrated to obtain the top event probability and system failure frequency.  D2T2 

employs modified versions of two of the most effective modularisation approaches, the reduction 

algorithm used in FAUNET [24, 25] and the Linear Time algorithm of Dutuit and Rauzy [26].  Due to 

the different philosophies taken by the two methods they can be applied sequentially to achieve an 

improved degree of modularisation than either can achieve in isolation.  These methods identify 

independent sub-trees to enable the efficient solution of conventional FTA.  In their original form 

they account for dependencies introduced through basic events which occur more than once in the 

fault tree structure.  The changes incorporated in these approaches extends their capability to enable 

dependencies to exist between different basic events.  When the modularisation process is complete, 

the fault tree will be represented as a number of concise independent modules which will be solved 

separately. The algorithm then utilises Markov or Petri net models to solve each dynamic, 

dependent, or complex part of the problem.  Those modules which retain the fault tree form are 

converted to a BDD for analysis using an effective variable ordering scheme.  Finally, the results from 

the analysis of the independent Markov, Petri net, complex factors, and components are used to 

quantify the BDD models calculating the top event probability and the system failure frequency.  

Figure 1 summarises this process.   The objective of the work contained in this paper is to extend the 

analysis framework to include component importance measures 
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Figure2: Pressure Vessel Cooling System 

 

3. Pressure Vessel Cooling System Case Study  
 

To illustrate the calculation processes needed to deliver the importance measures for fault trees 

evaluated using the D2T2 methodology, a Pressure Vessel Cooling System will be used. The details of 

this example and its analysis are given in reference 20.  A schematic of the system is shown in Figure 

2.  The system features 4 sub-systems:  a primary cooling system, a temperature detection system, a 

fan cooling system and a secondary cooling system.   If the primary cooling system fails then the 

vessel temperature will increase.  An increase in vessel temperature will be detected by the sensing 

system which will close relays which activate both the fan cooling system and the secondary cooling 

system.   The component failure events considered in the analysis is given in Table 1.  The fault tree 

has then been constructed for causes of the cooling system failing which will require the primary 

cooling system to fail along with any of the temperature sensing system, the fan cooling system and 

the secondary cooling system.  

Event 
Code 

Description 
Initiator/ 
Enabler 

T1 Water Supply failure I 

P1 Pump fails when running I 

P2 Pump fails when running I 

PoW Power supply failure I 

S1, S2 
Sensor fails to detect a high 

temperature 
E 

Comp 
Computer fails to process 

sensor signals 
E 

R1 / R2 Relay contacts fail to close E 

Motor Motor fails E 

Fan Fan fails E 

T2 Water Supply failure E 

V1 Valve fails to open E 

P3 
Pumps fails when running 
(P3R) or when activated 

(P3S) 
E 

Hx1 Heat exchanger fails I 

Hx2 Heat exchanger fails E 

Table 1: Basic Event Definitions 

R1

COMP

PRESSURE VESSEL

TANK 2
(T2)

P1

P2

P3

HEAT EXCHANGER
(HX1)

HEAT EXCHANGER
(HX2)

VALVE
(V1)

RELAY
(R1)

MOTOR
(M)

FAN
(F)

S1 S2

R2

TANK 1
(T1)

M

RELAY
(R2)
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The essential details of the system analysis, to be used in the importance measures calculations are 

given in the following sections.   The fault tree for the failure of this cooling system is shown in Figure 

3.  The form of the fault tree presented has been contracted into an alternating sequence of AND and 

OR gates.  Complexity and dependency details, which are the reasons that solutions cannot be 

achieved through traditional FTA, are given in Table 2.   

 

 

Figure 3: Pressure Vessel Cooling System Failure Fault Tree 

 

Group Components Details 

C1 Motor 
Experiences a Weibull failure time distribution W(1.2, 3600) and Lognormal repair 
time distribution Ln(2300, 120).   The motor failure remains independent from the 

state of the other components 

D1 P1, P2 
Pumps P1 and P2 usually both operate to share the load of delivering the coolant to 

the vessel.  When either fails the other experiences an increased load and an 
increased failure rate. 

D2 Hx1, Hx2 
Heat Exchangers Hx1 and Hx2 experience an opportunistic maintenance dependency.  

When one fails, both are replaced and returned to the new condition. 

D3 P3S P3R P3 can fail to start (P3S) or fail once running (P3R). 

Table 2: Complexity and Dependency Group Details 

 

3.1 Fault Tree Modularisation 

As shown in Figure 1, the data input to the D2T2 methodology takes the form of a fault tree structure 

file (defining the fault tree in Figure 3), the component failure and repair data, and the dependency 

models (Petri net and Markov models for the dependencies defined in Table 3).  In order to show 

how the importance measures are calculated it is necessary to describe some aspects of the D2T2 

methodology. The modularisation process is essential for the importance measures calculation and 

so will be explained in detail in this section.  The first task of the D2T2 methodology is reduce the 

problem to a sequence of independent sub-problems which is accomplished by the modularisation 

algorithms.  It is these modules that are to be used to then calculate the importance measures, as 

such, they will be developed stage by stage. 

Application of modified FAUNET reduction algorithm 
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System Fails

OR

T1 Hx1PoWAND

P1 P2

Auxiliary Cooling 
System Fails

OR

AND

S1 S2

Comp R1 Fan Motor PoW R2 P3S T2Hx2P3R V1

Pressure Vessel 
Cooling Fails

AND

OR

Hx1PoW

OR

Cf2 Cf3 Cf4 PoWCf1 T1 Hx2

Pressure Vessel 
Cooling Fails

AND

OR

Hx1

PoW

OR

Cf2 Cf3 Cf4Cf1 T1 Hx2

OR

Pressure Vessel 
Cooling Fails

AND (G1)

OR

Hx1

PoW

OR

Cf6Cf5 Hx2

OR

A:  after Contraction 1 B:  after Factorisation 1

C:  after Extraction 1 D:  after Contraction 2
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The original reduction algorithm (24, 25) repeated applies three processes to the fault tree 

known as:  contraction, factorisation and extraction.    

Contraction:  compresses the structure into an alternating sequence of AND and OR gates. 

Factorisation: defines factors in the tree where the events always appear together entering 

the same gate type.  For analyses performed using D2T2, it is necessary to modify this 

requirement to account for the dependencies between the basic events, and so the factors 

additionally need to contain only independent initiating events, independent enabling events, 

or all of the events that belong to a dependency group. 

Extraction:  re-arranges the fault tree sub-structures where an AND (OR) gate develops into OR 

(AND) gates which all have X as an input, to extract the factor, X, such that one of the following 

mappings take place: 

 

(𝐴 + 𝑋). (𝐵 + 𝑋) → 𝑋 + 𝐴. 𝐵                   (1) 

               𝐴. 𝑋 + 𝐵. 𝑋 → 𝑋. (𝐴 + 𝐵) 

 

For the Pressure Vessel Cooling System fault tree shown in Figure 3, the first contraction stage 

has already been applied so it exists as an alternating sequence of AND and OR gates. 

 

The application of the first factorisation process identifies four factors Cf1-Cf4 as shown in 

Figure 4. 

 

The repeated event PoW then enables a restructuring of the fault tree, using the first mapping 

in equation 1 to extract this event to a higher level.  The result of this is shown in Figure 5.   

Since it is already an alternating sequence of AND and OR gates the execution of contraction 

stage 2 produces no changes. 

 

Applying the factorisation stage for a second time produces two new factors:   Cf5=CF1+T1 and 

CF6=Cf2+Cf3+Cf4 (See Figure 6).   Further use of the contraction, factorisation or extraction 

processes result in no changes to the fault tree and its form at the end of the reduction 

modularisation is shown on the left hand side of Figure 7. 

 

The linear-time algorithm (26) identifies independent gates in the fault tree structure and can be 

applied to produce a further reduction in the size of the fault tree to be analysed.  Only a minor 

modification in the labelling is necessary for this to work for dependencies between basic events.  All 

events in any dependency group are labelled with the dependency group label.  Applying the 

algorithm to the final fault tree resulting from the reduction modularisation, identifies that the TOP 

gate and the gate labelled G1 are both independent of the rest of the structure and these two 

sections can be analysed separately to simplify the quantification process (Figure 7).  Both fault tree 

modules will be converted to BDDs using the ordering 𝑐𝑓5 < 𝐻𝑥1 < 𝐶𝑓6 < 𝐻𝑥2 for the tree headed 

G1 and 𝑃𝑜𝑊 < 𝐺1 for the tree for the TOP event.  It should be noted that the fault tree section 

headed G1 contains basic events HX1 and HX2 which feature a dependency solved using a Petri Net 

and the results substituted into the analysis of this BDD.   TOP contains only independent events and 

therefore its solution proceeds as for BDDs of conventional fault trees.  
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Figure 5:  Extraction Stage 1 Application 

   

Figure 6:  Final Factorisation Phase 

 

 

Figure 7:  Application of the Linear-Time Algorithm 

At the end of the modularisation process of the D2T2 methodology, the problem has been redefined to be the 

analysis of a series of a smaller modules.  Each module is independent of the rest of the analysis and can be 

solved separately. This results in a multi-layer analysis which culminates in the analysis of a final BDD model for 

the top gate of the original fault Tree.  The analysis of other BDDs, complex factors, Petri nets, Markov models 

and component failure probabilities all feed into this quantification  process.  The analysis structure is illustrated 

in Figure 8 with a summary of the Complex Factors given in Table 3.   
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Complex Factor Composition Details 

𝐶𝑓1 𝑃1  𝑃2 Dependent ANDs 
Initiators 

𝐶𝑓2  1   2 Independent ANDs 
Enablers 

𝐶𝑓3 𝐶𝑜  +  1 +    + 𝑜 𝑜 +  2 + 𝑇2 +  1 Independent ORs 
Enablers 

𝐶𝑓4 𝑃3 + 𝑃3  Complexity 
Enablers 

𝐶𝑓5 𝐶𝑓1 + 𝑇1 Independent ORs  
Enablers 

𝐶𝑓6 𝐶𝑓2 + 𝐶𝑓3 + 𝐶𝑓4 Independent ORs 
Enablers 

Table 3: Details of the Complex Factors 

 

4      Importance Measures 

When assessing a system, its performance is dependent upon that of its components.  Certain 

components will play a more significant role in causing or contributing to system failure than others.  

The contribution that a component makes to system failure is known as its importance. The concept 

of importance was first introduced by Birnbaum in 1969 [21], since this time, numerous measures of 

importance have been developed to assess the different roles that a component failure can play in 

the deterioration of the system state.  Measures of importance can be categorised as either 

deterministic or probabilistic and assign a value between 0 and 1 to each component, with 1 

signifying the highest level of contribution. Deterministic measures of importance, such as the 

structural measures of importance [3], do not account for the reliability of the component(s).  

Probabilistic measures of importance take component failure probabilities and intensities into 

account and are, therefore, more useful than deterministic measures in practical reliability problems.  

Different measures are also relevant to the predicted system unavailability or unreliability.  This 

paper focuses on those measures with relevance to the system unavailability:  Birnbaum, Criticality 

[22], Risk Assessment Worth and Risk Reduction Worth [23].  Interpreting these importance 

measures enables weaknesses within the system to be identified and indicates where resources can 

be focussed to improve system performance.   It should be noted that another measure of 

importance relevant to the system unavailability is the Fussel-Vesely measure [27]. This measure 

requires the minimal cut sets to be calculated and as such is considered beyond the scope of this 

paper.  The measures considered in this paper can be calculated directly from the fault tree structure 

without first deriving the minimal cut sets.   

 

Each measure is defined below and the equations given which enable the measure to be quantified 

when all component failures are independent.  These definitions will then be extended to consider 

the situation when dependencies occur in section 5. 

 

4.1    Birnbaum’s Measure    Imp rtance 

Birnbaum’s measure of importance, denoted by 𝐺 (𝒒(𝒕)), also known as the Criticality Function, is 

defined as the probability that the system is in a critical state for component i.  The system is in a 

critical state for component i if the state of the system components results in the system being in a 

working state but should component 𝑖 fail it causes the system to transition to the failed state.  An 

expression for this measure is given in equation 2: 

 

𝐺 (𝒒(𝒕)) = 𝑄𝑠𝑦𝑠(1  𝒒(𝒕))  𝑄𝑠𝑦𝑠(   𝒒(𝒕))                                                                  (2) 
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where, 𝑄𝑠𝑦𝑠(𝒒(𝒕)) is the system unavailability function, the  ector of component una ailability’s 

𝒒(𝒕) = (  ( )   ( ) ……  ( )… .   𝑛( ))   (1  𝒒(𝒕)) = (  ( )   ( ) ……1 … .   𝑛( )) and 

(   𝒒(𝒕)) = (  ( )   ( ) ……  … .   𝑛( )). 

 

When the component failure probabilities are all independent,  𝑄𝑠𝑦𝑠(𝒒(𝒕)) is linear in each   , and 

an alternative expression for equation 2 is: 

 

𝐺 (𝒒(𝒕)) =
𝜕𝑄𝑠𝑦𝑠(𝒒(𝒕))

𝜕𝑞𝑖(𝑡)
                                                                                            (3) 

 

When a fault tree, where all basic events are independent, is converted to a BDD, Birnbaum’s 

measure of importance can be calculated via a single sweep of the BDD.  For each component, 

𝐺 (𝒒(𝒕)), is given by 𝑄𝑠𝑦𝑠(1  𝒒(𝒕))  𝑄𝑠𝑦𝑠(   𝒒(𝒕)) where: 

  

𝑄𝑠𝑦𝑠(1  𝒒(𝒕)) = ∑ 𝑃  (𝒒(𝒕)). 𝑃𝑜 
 (𝒒(𝒕))

 𝑎𝑡ℎ𝑠 
𝑐 𝑛𝑡𝑎 𝑛 𝑛𝑔 𝑡ℎ  
 −𝑏 𝑎𝑛𝑐ℎ  𝑓   

+ ∑ 𝑃𝑘(𝒒(𝒕))
 𝑎𝑡ℎ𝑠 𝑘 𝑛 𝑡 
𝑐 𝑛𝑡𝑎 𝑛 𝑛𝑔  

                        (4 ) 

𝑄𝑠𝑦𝑠(   𝒒(𝒕)) = ∑ 𝑃  (𝒒(𝒕)). 𝑃𝑜 
0(𝒒(𝒕))

 𝑎𝑡ℎ𝑠 
𝑐 𝑛𝑡𝑎 𝑛 𝑛𝑔 𝑡ℎ  
0−𝑏 𝑎𝑛𝑐ℎ  𝑓   

+ ∑ 𝑃𝑘(𝒒(𝒕))
 𝑎𝑡ℎ𝑠 𝑘 𝑛 𝑡 
𝑐 𝑛𝑡𝑎 𝑛 𝑛𝑔  

                        (4𝑏) 

 

 

where, 𝑃  (𝒒(𝒕)) is the probability of the path section from the root vertex to node 𝑖, 𝑃𝑜 
 (𝒒(𝒕)) is 

the probability of the path section from the end of the 1-branch of node 𝑖 to a terminal 1 node,  

𝑃𝑜 
0(𝒒(𝒕)) is the probability of the path section from the end of the 0-branch of node 𝑖 to a terminal 

1 node, and 𝑃𝑘(𝒒(𝒕)) is the probability of path k which does not pass through node 𝑖. 

 

4.2 Criticality Measure of Importance 

The Criticality measure of importance for component 𝑖 is defined as the probability that the system is 

in a critical state for component 𝑖 and 𝑖 fails, weighted by the system unavailability at time  .  An 

expression for this measure when basic event 𝑖 is independent of other component failures is given in 

equation 5. 

  

𝐼 
𝐶 =

𝐺𝑖(𝒒(𝒕)) 𝑞𝑖(𝑡)

𝑄𝑠𝑦𝑠(𝒒(𝒕))
                                                                                            (5) 

When component 𝑖 belongs to a dependency group, 𝐺 (𝒒(𝒕)) and   ( ) will be dependent.  

Therefore the calculation of the system being in a critical state for component 𝑖  and 𝑖 has failed will 

have to take this into consideration.   

 

4.3   Risk Assessment Worth (RAW) and Risk Reduction Worth (RRW) 

The Risk Achievement Worth (RAW) calculates the relative increase in the system unavailability when 

it is known that component 𝑖 has failed. It can be calculated using equation 6. 

 

𝐼 
 𝐴𝑊 =

𝑄𝑠𝑦𝑠(1  𝒒(𝒕))  𝑄𝑠𝑦𝑠(𝒒(𝒕))

𝑄𝑠𝑦𝑠(𝒒(𝒕))
                                                                 (6) 

 

The Risk Reduction Worth (RRW) calculates the relative reduction in the system unavailability when it 

is known that component 𝑖 is working. It is calculated using equation 7.  
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𝐼 
  𝑊 =

𝑄𝑠𝑦𝑠(𝒒(𝒕))  𝑄𝑠𝑦𝑠(   𝒒(𝒕))

𝑄𝑠𝑦𝑠(𝒒(𝒕))
                                                               (7) 

 

Since all the terms in equations 6 and 7 are calculated when predicting 𝑄𝑠𝑦𝑠(𝒒(𝒕)) and Birnbaum’s 

measures of importance, it is a cheap process to provide these extra measures of Importance. 

5. Importance Measure Calculation Methodologies for Dependent Events 

The following sections describe the methodologies to calculate each type of importance measure 

taking the modularised fault tree as the system failure model.  The methods presented will enable 

the importance measures to be calculated when dependencies exist between the basic events.  Each 

of the modules are mutually independent, as a consequence, any basic event will only feature in one 

of these modules or remain a single component model.  In addition, any dependency will only feature 

in one module.  In every case the Top Event, system failure model, will be represented by a BDD.   

BDDs emerging from the modularisation process can be classified as independent, 𝐵𝐷𝐷𝑗
𝐼, where all of 

the variables appearing on the diagram are independent of each other, or, as dependent, 𝐵𝐷𝐷𝑗
𝐷 

featuring some variables which have dependencies. 

 

The function which represents the system failure probability will be a function of probabilities taken 

from independent BDD modules, 𝐵𝐷𝐷𝑗
𝐼,  j=1, ….., N1, dependent BDD modules, 𝐵𝐷𝐷𝑗

𝐷,  j=1, ….., N2, 

Petri Net Modules, 𝑃 𝑗 ,  j=1, ….., N3,  Markov modules,  𝐾 𝑗 ,  j=1, ….., N4,   Complex Factor 

modules, Cfj,  j=1, ….., N5 and components.   This is illustrated by the structure shown in Figure 8. 

 

The calculation of each importance measure is discussed, in terms of its contribution to the system 

failure probability, accounting for the modularised system failure probability function. 

 

5.1 Birnbaum’s Measure    Imp rtance 

Using Equation 2, Birnbaum’s measure of importance for any component can be evaluated from two 

system evaluations, one conditional on the component failed and the other conditional on the 

component working.   From the example modularisation shown in Figure 8 it can be seen that for 

every component failure event there is a single path leading up through the diagram to the Top 

Event.  This path defines the modules whose probabilities are a function of the component failure 

probability.  If N such modules appear directly on the path from the root basic event to the top event, 

then Birnbaum’s measure of importance can be e aluated for component i using the chain rule: 

 

𝐺 (𝒒(𝒕)) = 𝐺𝑀 
 𝑦𝑠
(𝒒(𝒕)). 𝐺𝑀 

𝑀 (𝒒(𝒕)).…… . . 𝐺 
𝑀𝑁(𝒒(𝒕))                                                          (8)            

 

where: 𝐺𝑀𝑘
𝑀𝑗
(𝒒(𝒕)) is the probability that module Mj is in a critical state for module Mk.  In order to 

be able to evaluate equation 8 requires the ability to calculate the criticality function for modules 

defined by complex factors, BDDs, PNs and Markov modules.  The details of how these criticality 

functions are calculated for each situation is outlined below.  

  

5.1.1   Independent Components Failures Modelled by Complex Factors 

Complex Factors will be of one logic gate type, AND or OR, linking combinations of either basic events or 

other complex factors.  These combinations of events are either all independent or all belonging to a 

dependency group.  In the case that the complex factor represents a dependency group, then the 

probability of the event combination will be determined from the associated Petri Net or Markov model. In 

the situation that the complex factor is defined by independent events then the probability of the factor 

will be a linear function of the probabilities of its elements and equation 3 holds. 

 

For independent complex factors combining events with and OR gate: 



13 
 

 

𝐶𝑓𝑖 = 𝑓 + 𝑓 +⋯+𝑓𝑗 +⋯+𝑓𝑛                                                                                (9) 

 

where 𝑓𝑗 are basic events or other complex factors.  The complex factor probability is then given by: 

 

𝑄𝐶𝑓 = 1  ∏ (1   𝑗)
𝑛

𝑗= 
 

                                                                                (10) 

 

where qj is the probability of 𝑓𝑗 and: 

 

𝐺𝑗
𝐶𝑓 
=
𝜕𝑄𝐶𝑓 

𝜕 𝑗
=∏(1   𝑘)

𝑛

𝑘= 
𝑘≠𝑗

                                                                                 (11) 

 

𝑄𝐶𝑓 (1𝑗 𝒒(𝒕)) = 1            𝑄𝐶𝑓 ( 𝑗 𝒒(𝒕)) = 1     ∏(1   𝑘)

𝑛

𝑘= 
𝑘≠𝑗

                                                              (12)  

 

 

For an independent complex factor which combines events with an AND operator: 

 

𝐶𝑓𝑖 = 𝑓 . 𝑓 . … . 𝑓𝑗. ⋯ . 𝑓𝑛                                                                                (13) 

 

𝑄𝐶𝑓 =∏  𝑗
𝑛

𝑗= 
 

                                                                                (14) 

 

and  

𝐺𝑗
𝐶𝑓 
=
𝜕𝑄𝐶𝑓 

𝜕 𝑗
=∏( 𝑗)

𝑛

𝑘= 
𝑘≠𝑗

 

                                                                                 (15) 

 

𝑄𝐶𝑓 (1𝑗 𝒒(𝒕)) = 1     ∏(1   𝑘)

𝑛

𝑘= 
𝑘≠𝑗

               𝑄𝐶𝑓 ( 𝑗 𝒒(𝒕)) =                                                            (16) 

 

5.1.2   Dependent Component Failures in a Markov Model 

To calculate Birnbaum’s measure of importance for component j when j is in a dependency group 

analysed by a Markov model, it is necessary to return to the definition of the measure, i.e., the 

system is in a critical state for component 𝑗 such that the failure of component 𝑗 will cause the 

system to fail (equation 2).  To evaluate the two conditional probabilities in equation 2, the Markov 

state transition diagram can be examined and the system states partitioned into those where the 

relevant component, j, is failed and those where the component is working.  Amongst those states 

where j is failed, 𝑄𝑠𝑦𝑠 (1𝑗 𝒒(𝒕)) is evaluated by establishing the likelihoods of these states which 

result in system failure.   To calculate 𝑄𝑠𝑦𝑠 ( 𝑗  𝒒(𝒕)), the probability is the likelihood of the states 

where j is working, that a system failed state results.  Using equation 2 then gives: 
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𝐺𝑗
𝑀𝐾𝑉 =

∑ 𝑄𝑘𝑎𝑙𝑙 𝑠𝑡𝑎𝑡 𝑠  𝑘 𝑤 𝑡ℎ𝑗 𝑓𝑎 𝑙   𝑎𝑛  𝑡ℎ  𝑠𝑦𝑠𝑡 𝑚 𝑓𝑎 𝑙   

∑ 𝑄𝑙𝑎𝑙𝑙 𝑠𝑡𝑎𝑡 𝑠 𝑙 𝑤 𝑡ℎ 𝑗 𝑓𝑎 𝑙  
 

(17) 

                 
∑ 𝑄𝑚𝑎𝑙𝑙 𝑠𝑡𝑎𝑡 𝑠 𝑚 𝑤 𝑡ℎ𝑗 𝑤  𝑘 𝑛𝑔 𝑎𝑛  𝑡ℎ  𝑠𝑦𝑠𝑡 𝑚 𝑓𝑎 𝑙   

∑ 𝑄𝑛𝑎𝑙𝑙 𝑠𝑡𝑎𝑡 𝑠 𝑛 𝑤 𝑡ℎ 𝑗 𝑤  𝑘 𝑛𝑔
 

 

where 𝑄𝑗 ,  j=1, ….., NMKV,  are the probabilities of the states on the Markov state transition diagram. 

 

Markov models are used in the analysis to represent the dependencies between all the elements 

of a complex factor.  As examples, consider the two situations where the Markov models are 

illustrated in Figure 9, both where the complex factor is dependent upon two components, A and 

B. 

 

In the first case the model represents a dependency due to components, A and B, operating in a 

warm standby configuration (Figure 9a).   As such, the sub-system represented by the Markov 

model fails when both A and B are failed, 𝑄𝑀𝐾𝑉 =  𝐴.𝐵.  Consider first the criticality function for 

component A.  For states 3 and 5 component A is failed, for the remaining states, 1, 2 and 4, A is 

in the working state (i.e. working or in standby).  Of the states with component A failed, state 5 

has the system failed.  Therefore, the conditional probability that the system is failed given 

component A is failed, 𝑄𝑠𝑦𝑠(1𝐴 𝒒(𝒕)) =
𝑄5
(𝑄 + 𝑄5)
⁄  .  Since none of the states with A working 

result in system failure,  𝑄𝑠𝑦𝑠( 𝐴 𝒒(𝒕)) =  .  Repeating the process for component B gives: 

 

𝐺𝐴
𝑀𝐾𝑉 =

𝑄5

𝑄3+𝑄5
         𝐺𝐵

𝑀𝐾𝑉 =
𝑄5

𝑄4+𝑄5
                                                             (18) 

 

In the second example, the dependency is a maintenance dependency between components A 

and B due to their shared repair engineer (Figure 9b).  When one component is failed and the 

second component fails, it must queue until the engineer has completed the repair of the first 

component before the second component repair can start.  The system in this case will fail if A 

OR B fails (under repair or queuing for repair) and so 𝑄𝑀𝐾𝑉 =  𝐴+𝐵.   Partitioning the states for 

component A, states 2, 4 and 5 have A failed and in states 1 and 3, A is working.  States 2-5 

represent those states where the system has failed.  Therefore  𝑄𝑠𝑦𝑠(1𝐴 𝒒(𝒕)) =

(𝑄 + 𝑄4 + 𝑄5)
(𝑄 + 𝑄4 +𝑄5)
⁄ = 1 and  𝑄𝑠𝑦𝑠( 𝐴 𝒒(𝒕)) =

𝑄 
(𝑄 + 𝑄 )
⁄  .  Completing a similar 

process for component B gives: 

 

 𝐺𝐴
𝑀𝐾𝑉 = 1  

𝑄3

𝑄1+𝑄3
=

𝑄1

𝑄1+𝑄3
                   𝐺𝐵

𝑀𝐾𝑉 = 1  
𝑄2

𝑄1+𝑄2
=

𝑄1

𝑄1+𝑄2
                     (19)       

 

 

                                                     

5.1.3   Dependent Components Failed Modelled by Petri-net 

When the dependency is modelled using a Petri net, the model structure is different to that of a Markov 

model and the states represented in the places, in most cases, just refer to the status of a single 

component and are not mutually exclusive.  Thus during the simulation, the data is retained to enable the 

required predictions to be made.  To calculate 𝐺𝑗
 𝑁 (𝒒(𝒕)), the criticality function for component j data 

needs to be retained in order to calculate 𝑄𝑠𝑦𝑠 (1𝑗 𝒒(𝒕)) and  𝑄𝑠𝑦𝑠 ( 𝑗 𝒒(𝒕)).  The total time that the 

simulation spends in the following conditions is needed: 

 The system is failed and component j is failed  𝑇  

 The system is failed and component j is working  𝑇  
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 Component j is failed     𝑇  

   Total simulation time     𝑇𝑇𝑂𝑇 

 

 

Then 𝑄𝑠𝑦𝑠 (1𝑗 𝒒(𝒕)) =
𝑇1

𝑇3
 and 𝑄𝑠𝑦𝑠 ( 𝑗 𝒒(𝒕)) =

𝑇2

𝑇𝑇𝑂𝑇−𝑇3
 

 

𝐺𝑗
 𝑁 (𝒒(𝒕)) =

𝑇1

𝑇3
 -  

𝑇2

𝑇𝑇𝑂𝑇−𝑇3
                                                                                                    (2 ) 

 

 

 
Figure 9: (a) Markov Model for a Warm Standby  System; (b) Markov Model when One Maintenance 

Engineer (hatched states – system failure)                            

 
 

5.1.4   BDD Quantification 

The calculation of the criticality function for elements, j, of a BDD structure need to account for the 

situations where the failure of j is independent of all other components or it is a member of one of the 

dependency groups, 𝐷𝑘.  In both cases it is necessary to calculate 𝑄𝑠𝑦𝑠 (1𝑗 𝒒(𝒕)) and  𝑄𝑠𝑦𝑠 ( 𝑗  𝒒(𝒕)) and 

then use equation 2 to calculate 𝐺𝑗
𝐵𝐷𝐷 (𝒒(𝒕)).  In order to calculate the probability of the BDD failure event 

given that component j is failed, 𝑄𝑠𝑦𝑠 (1𝑗 𝒒(𝒕)), the probabilities of the paths through the BDD to a 

terminal 1 node are summed.  Consider the BDD in Figure 10, if  𝑗 = 1, paths which pass through any node 

j will pass through the node on the blue (failed) branch on their way to a terminal-1 and paths which pass 

through this on the red (working) branch can be ignored.  There will also be other routes to a terminal-1 

node which do not pass through a node representing the state of element j.   

On any path through the diagram the events encountered can be allocated to sets of states of components 

which feature in one of the dependency groups, 𝐷  𝑖 = 1… .      or to a set of states of components which 

fail independently, 𝐼.  The events that are placed in each dependency set will feature the element label and 

indicate if the path passes through this element on its 1-branch or 0-branch.  This combination of events 

will be labelled, Dpath.  Similarly the collection of elements and their state (working or failed) contained in 

𝐼 will be labelled Ipath.  𝑄𝑠𝑦𝑠 (1𝑗 𝒒(𝒕)) and  𝑄𝑠𝑦𝑠 ( 𝑗 𝒒(𝒕)) are then calculated as: 

Element j fails independently of all other elements 

A-R
B-W

2

A-W
B-R
3

A-Q
B-R
4

A-R
B-Q

5

A-W
B-W

1

 𝐴

 𝐴

 𝐵

 𝐵

 𝐵
 𝐴

 𝐴

W – working
R – Failed under repair
Q – Queuing for repair 

 𝐵

A-W
B-S

1

A-S
B-W

2

A-F
B-W

3

A-W
B-F
4

A-F
B-F
5

 𝐴

 𝐴

  𝐴  𝐵  𝐵

 𝐵

 𝐵  𝐴

 𝐴 𝐵

W – working
S – Standby
F - Failed

(a) (b)
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𝑄𝑠𝑦𝑠 (1𝑗 𝒒(𝒕)) = ∑ 𝑃(   ℎ𝑘) + ∑ 𝑃(   ℎ𝑘)

𝑗∉ 𝑎𝑡ℎ𝑘𝑗1∈ 𝑎𝑡ℎ𝑘

 

                                                  (21) 

                                              

𝑄𝑠𝑦𝑠 ( 𝑗 𝒒(𝒕)) = ∑ 𝑃(   ℎ𝑘) + ∑ 𝑃(   ℎ𝑘)

𝑗∉ 𝑎𝑡ℎ𝑘𝑗0∈ 𝑎𝑡ℎ𝑘

 

                                                      (22) 

 

𝐺𝑗
𝐵𝐷𝐷 (𝒒(𝒕)) = ∑ [𝑃(𝐼   ℎ𝑘).  ∏[𝑃(𝐷   ℎ𝑘

 )]  

𝑛𝑑𝑒𝑝

 = 

]  ∑ [𝑃(𝐼   ℎ𝑘).  ∏[𝑃(𝐷   ℎ𝑘
 )]  

𝑛𝑑𝑒𝑝

 = 

]

𝑗0∈ 𝑎𝑡ℎ𝑘𝑗1∈ 𝑎𝑡ℎ𝑘

 

(23) 

Noting that 𝑃(𝑗 ) = 1 on the first term and 𝑃(𝑗0) = 1 in the second term calculations and the 

probability of the events in each Dpath are obtained from the relevant PN or Markov analysis. 

 

Element j belongs to dependency group Dd 

𝐺𝑗
𝐵𝐷𝐷 (𝒒(𝒕)) = ∑ [𝑃(𝐼   ℎ𝑘). (∏[𝑃(𝐷   ℎ𝑘

 )] 

𝑛𝑑𝑒𝑝

 = 
 ≠ 

)  . 𝑃(𝐷   ℎ𝑘
 | 𝑗1 = 1)]

𝑗1∈ 𝑎𝑡ℎ𝑘

 

+ ∑ [𝑃(𝐼   ℎ𝑗).  ∏[𝑃(𝐷   ℎ𝑘
 )] . 𝑃(𝐷   ℎ𝑘

 

𝑛𝑑𝑒𝑝

 = 
 ≠ 

| 𝑗1 = 1)]

𝑗 ∉  𝑎𝑡ℎ𝑘

 

 ∑ [𝑃(𝐼   ℎ𝑘).(∏[𝑃(𝐷   ℎ𝑘
 )] 

𝑛𝑑𝑒𝑝

 = 
 ≠ 

)  . 𝑃(𝐷   ℎ𝑘
 | 𝑗0 = 1)]

𝑗0∈ 𝑎𝑡ℎ𝑘

 

 ∑ [𝑃(𝐼   ℎ𝑘).  ∏[𝑃(𝐷   ℎ𝑘
 )] . 𝑃(𝐷   ℎ𝑗

 

𝑛   

 = 
 ≠ 

| 𝑗0 = 1)]

𝑗 ∉  𝑎𝑡ℎ𝑘

 

             (24) 

 

 

Figure 10: Generic BDD structure 

1

j

1 0 1 0

1 0
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5.2        Criticality Measure of Importance 

For a component which, i, which fails independently of the other basic events, the calculation of the 

Criticality measure remains as specified by equation 5 and can be accomplished cheaply having 

obtained Birnbaum’s measure of importance.   

 

For basic events which belong to one of the dependency groups the Criticality Function and the 

component failure probability cannot be multiplied together and the probability that the module is in 

a critical state and basic event has failed needs to be evaluated when considering the analysis of the 

relevant Petri net or Markov model for the dependency the Criticality measure of importance is given 

by:  

 

𝐼 
𝐶  = {𝐺𝑀 

 𝑦𝑠
(𝒒(𝒕)). 𝐺𝑀 

𝑀 (𝒒(𝒕)).…… . . . 𝐺𝑀𝑠
𝑀 (𝒒(𝒕))………𝐺 

𝑀𝑁 ∩ 𝑖(𝒒(𝒕)) } /𝑄 𝑦𝑠(𝒒(𝒕))   (25)            

 

where 𝐺 
𝑀𝑁 ∩ 𝑖 is the probability that the dependent module which contains i is critical for event i  

and i fails. 

 

5.2.1   Dependent Component Failures in a Markov Model 

 

When calculating the Criticality measure of importance for a component which features in a 

Markov dependency model, equation 25 is used.  It is required to calculate the 𝐺 
𝑀𝑁 ∩ 𝑖  term 

from the Markov model.  As when calculating Birnbaum’s measure  it is necessary to consider 

the definitions of the states represented on the Markov State Transition Diagram.  It is required 

to identify those States where the system was in a critical state for component i and then 

component i fails which fails the system.  The probability of these states are then summed to 

calculate 𝐺 
𝑀𝑁 ∩ 𝑖.   

 

As an example, consider the calculation of 𝐺𝐴
𝑀𝐾𝑉8𝑎 ∩ 𝐴 for the Markov model illustrated in Figure 

9a.  the critical state for component A is State 4.  As is shown in the diagram when A fails from 

State 4 the system transitions to State 5 and the system is failed.  Thus:  

 

𝐺𝐴
𝑀𝐾𝑉8𝑎 ∩ 𝐴 = 𝑄5(𝒒(𝒕))                                                                            (26) 

 

For the Markov model illustrated in Figure 9b, the critical state for component A is State 1 and 

the failure of component A then takes it to the system failed state 2 and so: 

 

𝐺𝐴
𝑀𝐾𝑉8𝑏 ∩ 𝐴 = 𝑄 (𝒒(𝒕))                                                                           (27)   

 

                                                                   

 

5.2.2   Dependent Component Failures in a Petri Net Model 

The approach taken to calculate the criticality measure of importance for a component which is 

included in a Petri net module follo s that used to calculate Birnbaum’s measure of importance for 

Petri net models where the times of residing in certain condition states are logged during the 

simulation.  For all component failures which appear in a dependency group then the Criticality 

importance measure is calculated using equation 25 where the analysis of the Petri net will deliver 

the 𝐺 
𝑀𝑁 ∩ 𝑖  term in the equation. 

 

To calculate 𝐺 
𝑀𝑁 ∩ 𝑖  it is necessary to monitor the monitor the simulation time in the following 

states: 
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 The system is failed and component i is failed  𝑇  

 The system is failed and component i is working  𝑇  

   Total simulation time     𝑇𝑇𝑂𝑇 

 

𝐺 
𝑀𝑁 ∩ 𝑖 = (𝑇  𝑇 )/ 𝑇𝑇𝑂𝑇                                                                                        (28) 

 

5.3 Risk Achievement Worth and Risk Reduction Worth Measures 

The expression to calculate the Risk Achievement Worth is given in equation 6.  All terms of this 

equation have been previously considered during the system assessment 𝑄𝑠𝑦𝑠(𝒒(𝒕)) and the 

evaluation of 𝑄𝑠𝑦𝑠 (1𝑗  𝒒(𝒕)) during the quantification of Birnbaum’s measure of importance.  

Therefore this importance measure can be calculated very cheaply. 

 

The same is true for the Risk Reduction Worth which requires 𝑄𝑠𝑦𝑠 ( 𝑗  𝒒(𝒕)), again evaluated during 

the production of Birnbaum’s measure of importance along  ith 𝑄𝑠𝑦𝑠(𝒒(𝒕)) to quantify equation 7. 

 

 

6  Case Study: Pressure Cooling Vessel System 

 

To illustrate the approach to calculating each of the importance measures, consider the Pressure 

Cooling Vessel system introduced in section 2.  The dependencies between P1 and P2 are modelled in 

the Markov diagram shown in Figure 11.  Figure 12 contains the Petri net to model the relationship 

between the heat exchangers, Hx1 and Hx2. 

 

The analysis of the fault tree using the D2T2 algorithm to get the top event failure probability 

(𝑄𝑠𝑦𝑠(𝒒(𝒕)) ) will, as intermediate stages, calculate the probability of all of the complex factors, the 

probability of dependent events Hx1 and Hx2 with a Petri Net evaluation and the probability of the P1 

and P2 dependent events with the Markov Assessment.  These will then be substituted into the BDD 

calculations to predict the top event performance.   All of these calculations are retained for use in 

evaluating the component importance measures. 

 

A comprehensive assessment of the importance measures for all components in the Pressure Cooling 

Vessel system is given stage by stage in the following sections. 

 

6.1  Birnbaum’s Measures of Importance 

 

The criticality function is evaluated for each of the independent modules identified in the D2T2 

modularisation process.  These are considered in the following sections first considering the 

independent complex factors, Cf2-Cf6,  Cf1 represents the dependent event combination P1.P2 and 

will be considered later. 

 

6.1.1     Criticality Function terms for Independent Complex Factors 

 

The criticality function for Cf2 = S1.S2 is given in Table 4.   The terms in the table are obtained using 

equations 15 and 16 for complex factors with an AND operator. 

 

Component (i) 𝑸𝑪𝒇𝟐(𝟏𝒊 𝒒(𝒕)) 𝑸𝑪𝒇𝟐(𝟎𝒊 𝒒(𝒕)) 𝑮𝒊
𝑪𝒇𝟐(𝒒(𝒕)) 

S1     0     

S2     0     

Table 4:  the Criticality Function of Cf2 with respect to its input factors 
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Table 5 contains the criticality function for the complex factor Cf3 = Comp + R1 + Fan + Motor + R2 + T2 

+ V1 with respect to its inputs.  The factor has 7 basic events as inputs to an OR operator and the terms 

are therefore evaluated using equations 11 and 12. 

 

Component (i) 𝑸𝑪𝒇𝟑(𝟏𝒊 𝒒(𝒕)) 𝑸𝑪𝒇𝟑(𝟎𝒊 𝒒(𝒕)) 𝑮𝒊
𝑪𝒇𝟑
(𝒒(𝒕)) 

Comp 1 1  (1     ). (1   𝐹𝑎𝑛). 
(1   𝑀 𝑡  ). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

(1     ). (1   𝐹𝑎𝑛). 
(1   𝑀 𝑡  ). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

R1 1 1  (1   𝐶 𝑚 ). (1

  𝐹𝑎𝑛). 
(1   𝑀 𝑡  ). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

(1   𝐶 𝑚 ). (1   𝐹𝑎𝑛). 

(1   𝑀 𝑡  ). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

Fan 1 1  (1   𝐶 𝑚 ). (1     ). 

(1   𝑀 𝑡  ). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

(1   𝐶 𝑚 ). (1     ). 

(1   𝑀 𝑡  ). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

Motor 1 1  (1   𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

(1   𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

R2 1 1  (1   𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1   𝑀 𝑡  ). 
(1   𝑇 ). (1   𝑉 ) 

(1   𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1   𝑀 𝑡  ). 
(1   𝑇 ). (1   𝑉 ) 

 

T2 1 1  (1   𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1   𝑀 𝑡  ). 
(1     ). (1   𝑉 ) 

(1   𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1   𝑀 𝑡  ). 
(1     ). (1   𝑉 ) 

 

V1 1 1  (1   𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1   𝑀 𝑡  ). 
(1     ). (1   𝑇 ) 

(1   𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1   𝑀 𝑡  ). 
(1     ). (1   𝑇 ) 

 

Table 5:  the Criticality Function of Cf3 with respect to its input factors 

 

Complex factor 4, Cf4 = P3, is a simple combination of the failure modes for the pump, P3.  Since it 

only has one input its criticality function evaluation is trivial as shown in Table 6. 

 

Component (i) 𝑸𝑪𝒇𝟒(𝟏𝒊 𝒒(𝒕)) 𝑸𝑪𝒇𝟒(𝟎𝒊 𝒒(𝒕)) 𝑮𝒊
𝑪𝒇𝟒(𝒒(𝒕)) 

P3 1 0 1 

Table 6:  the Criticality Function of Cf4 with respect to its single input 

 

The final two complex factors are both OR combinations of events.   Cf5 = Cf1 + T1, combines a 

complex factor and a basic event as inputs, whereas the inputs to Cf6 = Cf2 + Cf3 + Cf4 are all complex 

factors.  There criticality function evaluations of Cf5 and Cf6 are given in Tables 7 and 8 respectively.  

As with Cf3, equations 11 and 12 are utilised. 
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Component (i) 𝑸𝑪𝒇𝟓(𝟏𝒊 𝒒(𝒕)) 𝑸𝑪𝒇𝟓(𝟎𝒊 𝒒(𝒕)) 𝑮𝒊
𝑪𝒇𝟓
(𝒒(𝒕)) 

Cf1 1  𝑇  1   𝑇  
 

T1 1  𝐶𝑓  1   𝐶𝑓  

 

Table 7:  the Criticality Function of Cf5 with respect to its inputs 

 

Component (i) 𝑸𝑪𝒇𝟔(𝟏𝒊 𝒒(𝒕)) 𝑸𝑪𝒇𝟔(𝟎𝒊 𝒒(𝒕)) 𝑮𝒊
𝑪𝒇𝟔
(𝒒(𝒕)) 

Cf2 1 1  (1   𝐶𝑓 ). (1   𝐶𝑓4) (1   𝐶𝑓 ). (1   𝐶𝑓4) 

Cf3 1 1  (1   𝐶𝑓 ). (1   𝐶𝑓4) (1   𝐶𝑓 ). (1   𝐶𝑓4) 

Cf4 1 1  (1   𝐶𝑓 ). (1   𝐶𝑓 ) (1   𝐶𝑓 ). (1   𝐶𝑓 ) 

Table 8:  the Criticality Function of Cf6 with respect to its inputs 

 

 

6.1.2     Criticality Function terms for Dependent Complex Factors  

 

Complex factor Cf1 = P1.P2 represents the AND combination of dependent events P1 and P2 which are 

modelled by the Markov model to deliver both their combined probability and the probability of the 

individual event combinations.  The terms needed to calculate the criticality function for this factor are 

shown in Table 9 and taken from the Markov model analysis results. 

 

Component (i) 𝑸𝑪𝒇𝟏(𝟏𝒊 𝒒(𝒕)) 𝑸𝑪𝒇𝟏(𝟎𝒊 𝒒(𝒕)) 𝑮𝒊
𝑪𝒇𝟏(𝒒(𝒕)) 

P1     0     

P2     0     

Table 9:  the Criticality Function of Cf1 with respect to its dependent inputs 

 

6.1.3     Criticality Function terms for BDDs  

 

Two BDDs, shown in Figure 7, are utilised in the D2T2 analysis of the fault tree.  The first represents the 

top event, Sys, it has two inputs, gate G1 and basic event PoW.  These inputs are independent and the 

terms in the criticality function evaluation, given in Table 10, are obtained using equations 21-23.    

 

Component (i) 𝑸𝑺𝒚𝒔(𝟏𝒊 𝒒(𝒕)) 𝑸𝑺𝒚𝒔(𝟎𝒊 𝒒(𝒕)) 𝑮𝒊
𝑺𝒚𝒔(𝒒(𝒕)) 

PoW 1  𝐺  1   𝐺  
 

G1 1    𝑊 1     𝑊 
 

Table 10:  the Criticality Function of the top event BDD with respect to its inputs 

 

The second BDD represents the causes of gate G1 in the original fault tree and has 4 inputs: 

independent complex factors Cf5 and Cf6 along with dependent basic events Hx1 and Hx2.   

For the criticality of G1 with respect to Cf5, Cf5 is a component in a dependency BDD, 𝐵𝐷𝐷 
𝐷, and so 

equations 21, 22 and 24 are applied considering dependency group, D2 = {Hx1, Hx2}.  Since there are 4 

paths through the BDD (Shown in Figure 7): 

 

      Cf51 . Cf61 

      Cf51 . Cf60 . Hx21 

      Cf50 . Hx11 . Cf61 

      Cf50 . Hx11 . Cf60 . Hx21 

These give: 
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𝑄𝐺 (1𝐶𝑓5 𝒒(𝒕)) =  𝐶𝑓6 + (1   𝐶𝑓6) 𝐻𝑥                                                                    (29 ) 

𝑄𝐺 ( 𝐶𝑓5 𝒒(𝒕)) =  𝐻𝑥 .  𝐶𝑓6 + (1   𝐶𝑓6) 𝐻𝑥 .𝐻𝑥                                                         (29𝑏) 

𝐺𝐶𝑓5
𝐺 (𝒒(𝒕)) =   𝐶𝑓6 + (1   𝐶𝑓6) 𝐻𝑥   𝐻𝑥 .  𝐶𝑓6  (1   𝐶𝑓6) 𝐻𝑥 .𝐻𝑥                         (29𝑐)      

 

where  𝐻𝑥 ,  𝐻𝑥  and  𝐻𝑥 .𝐻𝑥  are obtained from the original analysis of the Petri net shown in 

Figure 12. 

                                                 

 

Component (i) 𝑸𝑮𝟏(𝟏𝒊 𝒒(𝒕)) 𝑸𝑮𝟏(𝟎𝒊 𝒒(𝒕)) 𝑮𝒊
𝑮𝟏(𝒒(𝒕)) 

Cf5  𝐶𝑓6 + (1   𝐶𝑓6).  𝐻𝑥  

 

 𝐻𝑥  𝐶𝑓6 

+(1   𝐶𝑓6).  𝐻𝑥 .𝐻𝑥  

 𝐶𝑓6(1   𝐻𝑥 ) + 

(1   𝐶𝑓6). ( 𝐻𝑥 
  𝐻𝑥 .𝐻𝑥 ) 

Cf6  𝐶𝑓5 + (1   𝐶𝑓5).  𝐻𝑥  

 

 𝐻𝑥  𝐶𝑓5 

+(1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥  

 𝐶𝑓5(1   𝐻𝑥 ) + 

(1   𝐶𝑓5). ( 𝐻𝑥 
  𝐻𝑥 .𝐻𝑥 ) 

Hx1  𝐶𝑓6 + (1   𝐶𝑓6).  𝐻𝑥  

 
 𝐶𝑓5( 𝐶𝑓6
+ (1   𝐶𝑓6).  𝐻𝑥 ) 

 

(1   𝐶𝑓5)( 𝐶𝑓6
+ (1   𝐶𝑓6).  𝐻𝑥 ) 

 

Hx2  𝐶𝑓5 + (1   𝐶𝑓5).  𝐻𝑥  

 
 𝐶𝑓6( 𝐶𝑓5
+ (1   𝐶𝑓5).  𝐻𝑥 ) 

 

(1   𝐶𝑓6)( 𝐶𝑓5
+ (1   𝐶𝑓5).  𝐻𝑥 ) 

 

Table 11:  the Criticality Function of the gate G1 event BDD with respect to its dependent inputs 

 

 

 
Figure 11   Markov Model for Secondary Failure Dependency 
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Figure 12   Petri Net Model for Opportunistic Maintenance  

 

 

6.1.4     Component Criticality Function Evaluations  

 

The results presented in Tables 4-11 give the criticality function for each of the independent modules 

of the original fault tree with respect to their inputs.  These are the basic building blocks to evaluate 

Birnbaum’s  easure of importance (criticality function) for each basic event.   Table 12 gives the 

expression to evaluate each component importance measure and, in the third column, the evaluation 

of this expression.  The expression to give each measure of component importance is obtained from 

the structure of the modules in evaluating the system performance, given in Figure 8. 

 

 As an example, consider basic event S1, the temperature sensor failure.  S1 fails independently of 

other basic events in the fault tree. 

 

Using the model structure diagram shown in Figure 8 the influence of S1 on the top event comes 

through: 

 1 → 𝐶𝑓2 → 𝐶𝑓6 → 𝐺1 →  𝑌  

 

Using equation 8 this gives the following expression for the criticality function of S1: 

 

𝐺  (𝒒(𝒕)) = 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓6

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓6(𝒒(𝒕)). 𝐺  

𝐶𝑓 (𝒒(𝒕))                                       (30)     

 

The first term of this expression, 𝐺𝐺 
 𝑌 (𝒒(𝒕)), is given in Table 10 which relates the criticality function 

of SYS in terms of its inputs which includes G1.    

 

  𝐺𝐺 
 𝑌 (𝒒(𝒕)) = 1     𝑊                                                                                           (31) 

The criticality function of G1 with respect to its input Cf6 is given in Table 11: 

 

𝐺𝐶𝑓6
𝐺 (𝒒(𝒕)) =   𝐶𝑓5 + (1   𝐶𝑓5) 𝐻𝑥   𝐻𝑥 .  𝐶𝑓5  (1   𝐶𝑓5) 𝐻𝑥 .𝐻𝑥                             (32)   

 

From Tables 4 and 8 we also get: 

Hx1 Working Hx1 FailedW(β,η) 

Hx2 Working

Hx2 Failed
unrevealed

W(β,η) 

Hx2 Failed
revealed

No 
inspection

θ

0.01

0.0

0.0

0.0

inspection

Hx1 Fails when 
Hx2 unrevealed

0.0
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𝐺𝐶𝑓 
𝐶𝑓6(𝒒(𝒕)) = (1   𝐶𝑓 )(1   𝐶𝑓4)                                                                                         (33) 

 

and 

𝐺  
𝐶𝑓 (𝒒(𝒕)) =                                                                                                                      (34) 

 

Substituting terms 31-34 into equation 30 gives: 

(1     𝑊)[ 𝐶𝑓5(1   𝐻𝑥 )(1   𝐶𝑓5). ( 𝐻𝑥   𝐻𝑥 .𝐻𝑥 )](1   𝐶𝑓 ). (1   𝐶𝑓4)            (35) 

 

Where dependent basic events are involved evaluating their criticality function will require 

probabilities calculated from the relevant Markov model or Petri Net which represent their 

dependencies.  

 

Consider of the complex event represented by Cf1 = P1 . P2 which is represented by the Markov model 

shown in Figure 11 and the discussion in section 5.1.2 is relevant.   The states in the Markov model 

with component P1 failed are labelled 2 and 4.  Of these only state 4 results in system failure.  

Therefore,  𝑄𝐶𝑓 (1   𝒒(𝒕)) =
𝑄4

𝑄2+𝑄4
 .  Since there are no states when component P1 is working that 

results in system failure 𝑄𝐶𝑓 (    𝒒(𝒕)) =  , and: 

 

𝐺  
𝐶𝑓 (𝒒(𝒕)) =

𝑄4

𝑄2+𝑄4
                                                                        (36) 

 

For the Heat exchanger, Hx1 is in Dependency Group 2, along with the second heat exchanger Hx2.  

The dependency between the heat exchangers is accommodated in the Petri net model which feeds 

into the dependency BDD which represents the gate event G1.  The Criticality function is then: 

 

𝐺𝐻𝑥 (𝒒(𝒕)) = 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐻𝑥 

𝐺 (𝒒(𝒕))                                                    (37)   

 

𝐺𝐻𝑥 
𝐺 (𝒒(𝒕))  is obtained by evaluating 𝑄𝐺 (1𝐻𝑥  𝒒(𝒕)) and 𝑄𝐺 ( 𝐻𝑥  𝒒(𝒕)) from the G1 BDD:        

 

𝑄𝐺 (1𝐻𝑥  𝒒(𝒕)) = ( 𝐶𝑓6 + (1   𝐶𝑓6) 𝐻𝑥 )                                      (38 ) 

𝑄𝐺 ( 𝐶𝑓5 𝒒(𝒕)) =  𝐶𝑓5. ( 𝐶𝑓6 + (1   𝐶𝑓6) 𝐻𝑥 )                                 (38𝑏) 

Giving: 

𝐺𝐻𝑥 
𝐺 (𝒒(𝒕)) = (1    𝐶𝑓5). ( 𝐶𝑓6 + (1   𝐶𝑓6) 𝐻𝑥 )                                (38𝑐)      

 

where  𝐻𝑥  is obtained from the Petri net model solution. 

                                                                                     

Component Expression 𝑮𝒊(𝒒(𝒕)) 

PoW 𝐺  𝑊
 𝑌 (𝒒(𝒕)) 1   𝐺  

Hx1 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐻𝑥 

𝐺 (𝒒(𝒕)) (1     𝑊)(1   𝐶𝑓5)( 𝐶𝑓6
+ (1   𝐶𝑓6).  𝐻𝑥 ) 

Hx2 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐻𝑥 

𝐺 (𝒒(𝒕)) (1     𝑊)(1   𝐶𝑓5)( 𝐶𝑓6
+ (1   𝐶𝑓6).  𝐻𝑥 ) 

T1 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓5

𝐺 (𝒒(𝒕)). 𝐺𝑇 
𝐶𝑓5(𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓6(1   𝐻𝑥 ) 

(1   𝐶𝑓6). ( 𝐻𝑥   𝐻𝑥 .𝐻𝑥 )](1

  𝐶𝑓 ) 
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P1 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓5

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓5(𝒒(𝒕)). 𝐺  

𝐶𝑓 (𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓6(1   𝐻𝑥 ) 

(1   𝐶𝑓6). ( 𝐻𝑥  

 𝐻𝑥 .𝐻𝑥 )](1   𝑇 )                                                                                                      

P2 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓5

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓5(𝒒(𝒕)). 𝐺  

𝐶𝑓 (𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓6(1   𝐻𝑥 ) 

(1   𝐶𝑓6). ( 𝐻𝑥  

 𝐻𝑥 .𝐻𝑥 )](1   𝑇 )         

S1 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓6

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓6(𝒒(𝒕)). 𝐺  

𝐶𝑓 (𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓5(1   𝐻𝑥 ) 

(1   𝐶𝑓5). ( 𝐻𝑥 
  𝐻𝑥 .𝐻𝑥 )](1   𝐶𝑓 ). (1

  𝐶𝑓4)    

S2 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓6

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓6(𝒒(𝒕)). 𝐺  

𝐶𝑓 (𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓5(1   𝐻𝑥 ) 

(1   𝐶𝑓5). ( 𝐻𝑥 
  𝐻𝑥 .𝐻𝑥 )](1   𝐶𝑓 ). (1

  𝐶𝑓4)    

Comp 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓6

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓6(𝒒(𝒕)). 𝐺𝐶 𝑚 

𝐶𝑓 (𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓5(1   𝐻𝑥 ) 

(1   𝐶𝑓5). ( 𝐻𝑥   𝐻𝑥 .𝐻𝑥 )](1

  𝐶𝑓 ). (1   𝐶𝑓4) (1

  𝑀 𝑡  ). (1     ). 
(1   𝐹𝑎𝑛). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

R1 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓6

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓6(𝒒(𝒕)). 𝐺  

𝐶𝑓 (𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓5(1   𝐻𝑥 ) 

(1   𝐶𝑓5). ( 𝐻𝑥   𝐻𝑥 .𝐻𝑥 )](1

  𝐶𝑓 ). (1   𝐶𝑓4) (1

  𝐶 𝑚 ). (1   𝑀 𝑡  ). 

(1   𝐹𝑎𝑛). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

Fan 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓6

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓6(𝒒(𝒕)). 𝐺𝐹𝑎𝑛

𝐶𝑓 (𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓5(1   𝐻𝑥 ) 

(1   𝐶𝑓5). ( 𝐻𝑥   𝐻𝑥 .𝐻𝑥 )](1

  𝐶𝑓 ). (1   𝐶𝑓4) (1

  𝐶 𝑚 ). (1     ). 

(1   𝑀 𝑡  ). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

Motor 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓6

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓6(𝒒(𝒕)). 𝐺𝑀 𝑡  

𝐶𝑓 (𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓5(1   𝐻𝑥 ) 

(1   𝐶𝑓5). ( 𝐻𝑥   𝐻𝑥 .𝐻𝑥 )](1

  𝐶𝑓 ). (1   𝐶𝑓4) (1

  𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

R2 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓6

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓6(𝒒(𝒕)). 𝐺  

𝐶𝑓 (𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓5(1   𝐻𝑥 ) 

(1   𝐶𝑓5). ( 𝐻𝑥   𝐻𝑥 .𝐻𝑥 )](1

  𝐶𝑓 ). (1   𝐶𝑓4) (1

  𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1   𝑀 𝑡  ). 
(1   𝑇 ). (1   𝑉 ) 

 

T2 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓6

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓6(𝒒(𝒕)). 𝐺𝑇 

𝐶𝑓 (𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓5(1   𝐻𝑥 ) 
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(1   𝐶𝑓5). ( 𝐻𝑥   𝐻𝑥 .𝐻𝑥 )](1

  𝐶𝑓 ). (1   𝐶𝑓4) (1

  𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1     ). 
(1   𝑀 𝑡  ). (1   𝑉 ) 

 

V1 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓6

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓6(𝒒(𝒕)). 𝐺𝑉 

𝐶𝑓 (𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓5(1   𝐻𝑥 ) 

(1   𝐶𝑓5). ( 𝐻𝑥   𝐻𝑥 .𝐻𝑥 )](1

  𝐶𝑓 ). (1   𝐶𝑓4) (1

  𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1     ). 
(1   𝑇 ). (1   𝑀 𝑡  ) 

 

P3 𝐺𝐺 
 𝑌 (𝒒(𝒕)). 𝐺𝐶𝑓6

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓4
𝐶𝑓6(𝒒(𝒕)). 𝐺  

𝐶𝑓4(𝒒(𝒕))  (1     𝑊)[ 𝐶𝑓5(1   𝐻𝑥 ) 

(1   𝐶𝑓5). ( 𝐻𝑥 
  𝐻𝑥 .𝐻𝑥 )](1   𝐶𝑓 ). (1

  𝐶𝑓 ) 

Table 12:  the Component Criticality Functions (Birnbaum’s Measure    Imp rtance) 

 

 

 

6.2    Criticality Measures of Importance 

 

 a ing calculated Birnbaum’s measure of importance (the Criticality Function), 𝐺 (𝒒(𝒕)), for those 

components which fail independently, it is a simple step to evaluate the Criticality measure of importance 

using equation 5 since Birnbaum’s measure of importance and the probability of component failure are 

independent. 

 

Of the components in the pressure vessel cooling system, P1, P2, Hx1 and Hx2 belong to dependency 

groups.  In this case the Criticality Function, 𝐺 (𝒒(𝒕)), and the component failure probability will be 

dependent.   P1 is dependent upon P2 and this dependency is modelled using the Markov model shown in 

Figure 11.  Hx1 and Hx2 are dependent events modelled with the Petri net shown in Figure 12.   

 

The calculation process which considers dependent events for the Criticality measure is described in 

sections 5.2.1 and 5.2.2.   

 

The Criticality measure calculations for P1 and Hx1 are explained below. 

 

P1 (Pump1 fails) 

 

The route from P1 to the fault tree top event passes through the following modules: 

 

𝑃1 → 𝐶𝑓1 → 𝐶𝑓5 → 𝐺1 →  𝑌  

 

Using equation 25, the Criticality measure of importance is: 

 

𝐼  
𝐶  ={𝐺𝐺 

 𝑦𝑠
(𝒒(𝒕)). 𝐺𝐶𝑓5

𝐺 (𝒒(𝒕)). 𝐺𝐶𝑓 
𝐶𝑓5(𝒒(𝒕)). 𝐺  

𝐶𝑓 
∩ 𝑃1(𝒒(𝒕)) } /𝑄 𝑦𝑠(𝒒(𝒕))                (39) 
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where 𝐺  
𝐶𝑓 

∩ 𝑃1(𝒒(𝒕)) is the probability that the system is in a critical state for component P1 and P1 

has failed, which fails the system.  From the Markov model for this section of the problem shown in 

Figure 11 it can be seen that 𝐺  
𝐶𝑓 

∩ 𝑃1(𝒒(𝒕)) = 𝑄4. 

 

Hx1 (Heat Exchanger 1 fails) 

 

The heat exchanger Criticality measure or importance is given by: 

 

𝐼𝐻𝑥 
𝐶  = {𝐺𝐺 

 𝑦𝑠
(𝒒(𝒕)). 𝐺𝐶𝑓5

𝐺 (𝒒(𝒕)). 𝐺𝐻𝑥 
𝐺 ∩ 𝐻𝑥1(𝒒(𝒕)) } /𝑄 𝑦𝑠(𝒒(𝒕))                         (4 )            

  

where 𝐺𝐻𝑥 
𝐺 ∩ 𝐻𝑥1( ( )) is the probability that the system is failed and component Hx1 has failed, 

which fails the system.  This probability is logged during the simulation of the Petri Net shown in Figure 

12 and substituted into equation 40. 

 

6.3   RAW and RRW Measures of Importance 

 

To calculate the values of 𝐼 
 𝐴𝑊and 𝐼 

  𝑊the values for 𝑄 𝑦𝑠(1  𝒒(𝒕)) and 𝑄 𝑦𝑠(   𝒒(𝒕)) are required 

along with 𝑄 𝑦𝑠(𝒒(𝒕)) resulting from the D2T2 analysis system assessment.    

 

To calculate the RAW measure of component importance, using equation 6, 𝑄 𝑦𝑠(1  𝒒(𝒕)) is required.   

This is evaluated using the results of each of the independent modules (complex factors, BDDs, Markov 

models and Petri Nets) derived when calculating 𝑄 𝑦𝑠(𝒒(𝒕)).   The basic event probability is set to 1 and 

this is then propagated up through the hierarchical analysis module structure (shown in Figure 8) to re-

process the top event, system failure probability.   The relevant equations for the modules influenced by 

each of the basic events is when in the second column of Table 13.  Combining these equations 

gives𝑄 𝑦𝑠(1  𝒒(𝒕)) in the third column of the table.  

 

The RRW measure of component importance is given in equation 7 and requires the evaluation of 

𝑄 𝑦𝑠(   𝒒(𝒕)).   This is processed by substituting the basic event failure probability of 0 and re-calculating 

the system failure probability.   The results of this process are reported in table 14.  For practical system 

evaluations the results for 𝐺 (𝒒(𝒕)) and 𝑄 𝑦𝑠(1  𝒒(𝒕)) can be calculated as shown in Table 12 and 13 and 

then  𝑄 𝑦𝑠(   𝒒(𝒕)) by taking their difference as shown in equation 2.  

 

 

Compon
ent 

Relevant Equations 𝑸𝒔𝒚𝒔(𝟏𝒊 𝒒(𝒕)) 

PoW 𝑄𝑠𝑦𝑠|  𝑊=  1 

Hx1 𝑄𝑠𝑦𝑠|𝐻𝑥 = =    𝑊 + (1     𝑊). 𝑄𝐺 |𝐻𝑥 =  

𝑄𝐺 |𝐻𝑥 = =  𝐶𝑓6 + (1   𝐶𝑓6).  𝐻𝑥  

 
 

   𝑊 + 
(1     𝑊). ( 𝐶𝑓6 + (1   𝐶𝑓6).  𝐻𝑥 ) 

Hx2 𝑄𝑠𝑦𝑠|𝐻𝑥 = =    𝑊 + (1     𝑊). 𝑄𝐺 |𝐻𝑥 =  

𝑄𝐺 |𝐻𝑥 = =  𝐶𝑓5 + (1   𝐶𝑓5).  𝐻𝑥  

 

   𝑊 + 
(1     𝑊). ( 𝐶𝑓5 + (1   𝐶𝑓5).  𝐻𝑥 ) 

T1 𝑄𝑠𝑦𝑠|𝑇 = =    𝑊 + (1     𝑊). 𝑄𝐺 |𝑇 =     𝑊 + 
(1     𝑊). ( 𝐶𝑓6 + (1   𝐶𝑓6).  𝐻𝑥 )  
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𝑄𝐺 |𝑇 = 
=  𝐶𝑓6.  𝐶𝑓5|𝑇 = +  𝐶𝑓5|𝑇 = . (1   𝐶𝑓6).  𝐻𝑥 
+ (1   𝐶𝑓5|𝑇 = ).  𝐻𝑥 .  𝐶𝑓6
+ (1   𝐶𝑓5|𝑇 = ).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6). 

𝑄𝐶𝑓5|𝑇 = = 1 

P1 𝑄𝑠𝑦𝑠|  = =    𝑊 + (1     𝑊). 𝑄𝐺 |  =  

𝑄𝐺 |  = 
=  𝐶𝑓6.  𝐶𝑓5|  = +  𝐶𝑓5|  = . (1   𝐶𝑓6).  𝐻𝑥 
+ (1   𝐶𝑓5|  = ).  𝐻𝑥 .  𝐶𝑓6
+ (1   𝐶𝑓5|  = ).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6) 

𝑄𝐶𝑓5|  = = 1  (1   𝐶𝑓 |  = )(1   𝐻 ) 

𝑄𝐶𝑓 |  = =     

   𝑊
+ (1     𝑊).  𝐶𝑓6. (1  (1     )(1

  𝐻 ))
+ (1  (1     )(1   𝐻 )). (1
  𝐶𝑓6).  𝐻𝑥 + (1     ).  𝐻𝑥 .  𝐶𝑓6
+ (1     ).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6) 

                                                                                               

P2 𝑄𝑠𝑦𝑠|  = =    𝑊 + (1     𝑊). 𝑄𝐺 |  =  

𝑄𝐺 |  = 
=  𝐶𝑓6.  𝐶𝑓5|  = +  𝐶𝑓5|  = . (1   𝐶𝑓6).  𝐻𝑥 
+ (1   𝐶𝑓5|  = ).  𝐻𝑥 .  𝐶𝑓6
+ (1   𝐶𝑓5|  = ).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6) 

𝑄𝐶𝑓5|  = = 1  (1   𝐶𝑓 |  = )(1   𝐻 ) 

𝑄𝐶𝑓 |  = =     

   𝑊 + (1     𝑊).  𝐶𝑓6. (1  (1  

   )(1   𝐻 )) + (1  (1  
   )(1   𝐻 )). (1   𝐶𝑓6).  𝐻𝑥 +

(1     ).  𝐻𝑥 .  𝐶𝑓6 + (1  

   ).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6)                                                                                                

S1 𝑄𝑠𝑦𝑠|  = =    𝑊 + (1     𝑊). 𝑄𝐺 |  =  

𝑄𝐺 |  = 
=  𝐶𝑓6|  = .  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|  = ).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|  = 
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|  = ) 

𝑄𝐶𝑓6|  = = 1  (1   𝐶𝑓 |  = )(1   𝐶𝑓 ) (1   𝐶𝑓4) 

𝑄𝐶𝑓 |  = =     

   𝑊
+ (1     𝑊). [1  (1     )(1

  𝐶𝑓 )(1   𝐶𝑓4)].  𝐶𝑓5
+ [(1     )(1   𝐶𝑓 )(1

  𝐶𝑓4)].  𝐻𝑥 
+ (1

  𝐶𝑓5).  𝐻𝑥 . [1  (1     )(1

  𝐶𝑓 )(1   𝐶𝑓4)]

+ (1

  𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . [(1     )(1

  𝐶𝑓 )(1   𝐶𝑓4)] 

S2 𝑄𝑠𝑦𝑠|  = =    𝑊 + (1     𝑊). 𝑄𝐺 |  =  

𝑄𝐺 |  = 
=  𝐶𝑓6|  = .  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|  = ).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|  = 
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|  = ) 

𝑄𝐶𝑓6|  = = 1  (1   𝐶𝑓 |  = )(1   𝐶𝑓 ) (1   𝐶𝑓4) 

𝑄𝐶𝑓 |  = =     

   𝑊
+ (1     𝑊). [1  (1     )(1

  𝐶𝑓 )(1   𝐶𝑓4)].  𝐶𝑓5
+ [(1     )(1   𝐶𝑓 )(1

  𝐶𝑓4)].  𝐻𝑥 
+ (1

  𝐶𝑓5).  𝐻𝑥 . [1  (1     )(1

  𝐶𝑓 )(1   𝐶𝑓4)]

+ (1

  𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . [(1     )(1

  𝐶𝑓 )(1   𝐶𝑓4)] 

Comp 𝑄𝑠𝑦𝑠|𝐶 𝑚 = =    𝑊 + (1     𝑊). 𝑄𝐺 |𝐶 𝑚 =  

𝑄𝐺 |𝐶 𝑚 = 
=  𝐶𝑓6|𝐶 𝑚 = .  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|𝐶 𝑚 = ).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|𝐶 𝑚 = 
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|𝐶 𝑚 = ) 

𝑄𝐶𝑓6|𝐶 𝑚 = 
= 1  (1   𝐶𝑓 )(1   𝐶𝑓 |𝐶 𝑚 = )(1   𝐶𝑓4) 

𝑄𝐶𝑓 |𝐶 𝑚 = = 1 

   𝑊 + (1     𝑊). [(1  (1  

 𝐶𝑓 )(1   𝐶𝑓4)) .  𝐶𝑓5 +  𝐶𝑓5(1  

 𝐶𝑓 )(1   𝐶𝑓4)  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . (1  (1   𝐶𝑓 )(1  

 𝐶𝑓4)) + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  

 𝐶𝑓 )(1   𝐶𝑓4)]  
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R1 𝑄𝑠𝑦𝑠|  = =    𝑊 + (1     𝑊). 𝑄𝐺 |  =  

𝑄𝐺 |  = 
=  𝐶𝑓6|  = .  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|  = ).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|  = 
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|  = ) 

𝑄𝐶𝑓6|  = = 1  (1   𝐶𝑓 )(1   𝐶𝑓 |  = )(1   𝐶𝑓4) 

𝑄𝐶𝑓 |  = = 1 

   𝑊 + (1     𝑊). [(1  (1  

 𝐶𝑓 )(1   𝐶𝑓4)) .  𝐶𝑓5 +  𝐶𝑓5(1  

 𝐶𝑓 )(1   𝐶𝑓4)  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . (1  (1   𝐶𝑓 )(1  

 𝐶𝑓4)) + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  

 𝐶𝑓 )(1   𝐶𝑓4)]  

 

Fan 𝑄𝑠𝑦𝑠|𝐹𝑎𝑛= =    𝑊 + (1     𝑊). 𝑄𝐺 |𝐹𝑎𝑛=  

𝑄𝐺 |𝐹𝑎𝑛= 
=  𝐶𝑓6|𝐹𝑎𝑛= .  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|𝐹𝑎𝑛= ).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|𝐹𝑎𝑛= 
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|𝐹𝑎𝑛= ) 

𝑄𝐶𝑓6|𝐹𝑎𝑛= 
= 1  (1   𝐶𝑓 )(1   𝐶𝑓 |𝐹𝑎𝑛= )(1   𝐶𝑓4) 

𝑄𝐶𝑓 |𝐹𝑎𝑛= = 1 

   𝑊 + (1     𝑊). [(1  (1  

 𝐶𝑓 )(1   𝐶𝑓4)) .  𝐶𝑓5 +  𝐶𝑓5(1  

 𝐶𝑓 )(1   𝐶𝑓4)  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . (1  (1   𝐶𝑓 )(1  

 𝐶𝑓4)) + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  

 𝐶𝑓 )(1   𝐶𝑓4)]  

 

Motor 𝑄𝑠𝑦𝑠|𝑀 𝑡  = =    𝑊 + (1     𝑊). 𝑄𝐺 |𝑀 𝑡  =  

𝑄𝐺 |𝑀 𝑡  = 
=  𝐶𝑓6|𝑀 𝑡  = .  𝐶𝑓5
+  𝐶𝑓5. (1   𝐶𝑓6|𝑀 𝑡  = ).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|𝑀 𝑡  = 
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|𝑀 𝑡  = ) 

𝑄𝐶𝑓6|𝑀 𝑡  =0
= 1  (1   𝐶𝑓 )(1   𝐶𝑓 |𝑀 𝑡  = )(1   𝐶𝑓4) 

𝑄𝐶𝑓 |𝑀 𝑡  = = 1 

   𝑊 + (1     𝑊). [(1  (1  

 𝐶𝑓 )(1   𝐶𝑓4)) .  𝐶𝑓5 +  𝐶𝑓5(1  

 𝐶𝑓 )(1   𝐶𝑓4)  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . (1  (1   𝐶𝑓 )(1  

 𝐶𝑓4)) + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  

 𝐶𝑓 )(1   𝐶𝑓4)]  

 

R2 𝑄𝑠𝑦𝑠|  = =    𝑊 + (1     𝑊). 𝑄𝐺 |  =  

𝑄𝐺 |  = 
=  𝐶𝑓6|  = .  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|  = ).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|  = 
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|  = ) 

𝑄𝐶𝑓6|  = = 1  (1   𝐶𝑓 )(1   𝐶𝑓 |  = )(1   𝐶𝑓4) 

𝑄𝐶𝑓 |  = = 1 

   𝑊 + (1     𝑊). [(1  (1  

 𝐶𝑓 )(1   𝐶𝑓4)) .  𝐶𝑓5 +  𝐶𝑓5(1  

 𝐶𝑓 )(1   𝐶𝑓4)  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . (1  (1   𝐶𝑓 )(1  

 𝐶𝑓4)) + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  

 𝐶𝑓 )(1   𝐶𝑓4)]  

 

T2 𝑄𝑠𝑦𝑠|𝑇 = =    𝑊 + (1     𝑊). 𝑄𝐺 |𝑇 =  

𝑄𝐺 |𝑇 = 
=  𝐶𝑓6|𝑇 = .  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|𝑇 = ).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|𝑇 = 
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|𝑇 = ) 

𝑄𝐶𝑓6|𝑇 = = 1  (1   𝐶𝑓 )(1   𝐶𝑓 |𝑇 = )(1   𝐶𝑓4) 

𝑄𝐶𝑓 |𝑇 = = 1 

   𝑊 + (1     𝑊). [(1  (1  

 𝐶𝑓 )(1   𝐶𝑓4)) .  𝐶𝑓5 +  𝐶𝑓5(1  

 𝐶𝑓 )(1   𝐶𝑓4)  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . (1  (1   𝐶𝑓 )(1  

 𝐶𝑓4)) + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  

 𝐶𝑓 )(1   𝐶𝑓4)]  

 

V1 𝑄𝑠𝑦𝑠|𝑉 = =    𝑊 + (1     𝑊). 𝑄𝐺 |𝑉 =  

𝑄𝐺 |𝑉 = 
=  𝐶𝑓6|𝑉 = .  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|𝑉 = ).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|𝑉 = 
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|𝑉 = ) 

𝑄𝐶𝑓6|𝑉 = = 1  (1   𝐶𝑓 )(1   𝐶𝑓 |𝑉 = )(1   𝐶𝑓4) 

   𝑊 + (1     𝑊). [(1  (1  

 𝐶𝑓 )(1   𝐶𝑓4)) .  𝐶𝑓5 +  𝐶𝑓5(1  

 𝐶𝑓 )(1   𝐶𝑓4)  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . (1  (1   𝐶𝑓 )(1  
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𝑄𝐶𝑓 |𝑉 = = 1  𝐶𝑓4)) + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  

 𝐶𝑓 )(1   𝐶𝑓4)]  

 

P3 𝑄𝑠𝑦𝑠|  = =    𝑊 + (1     𝑊). 𝑄𝐺 |  =  

𝑄𝐺 |  = 
=  𝐶𝑓6|  = .  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|  = ).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|  = 
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|  = ) 

𝑄𝐶𝑓6|  = = 1  (1   𝐶𝑓 )(1   𝐶𝑓 )(1   𝐶𝑓4|  = ) 

𝑄𝐶𝑓4|  = = 1 

   𝑊
+ (1     𝑊). [ 𝐶𝑓5
+ (1   𝐶𝑓5).  𝐻𝑥 ] 

 

Table 13:  the Probability of System Failure dependent upon each component failure 

 

 

 

 

 

Component Expression 𝑸𝒔𝒚𝒔(𝟎𝒊 𝒒(𝒕)) 

PoW 𝑄𝑠𝑦𝑠|  𝑊=0  𝐺  

Hx1 𝑄𝑠𝑦𝑠|𝐻𝑥 =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |𝐻𝑥 =0 

𝑄𝐺 |𝐻𝑥 =0 =  𝐶𝑓5( 𝐶𝑓6 + (1   𝐶𝑓6).  𝐻𝑥 ) 

 
 

   𝑊 + 

(1     𝑊). ( 𝐶𝑓5( 𝐶𝑓6 + (1  

 𝐶𝑓6).  𝐻𝑥 ))  

Hx2 𝑄𝑠𝑦𝑠|𝐻𝑥 =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |𝐻𝑥 =0 

𝑄𝐺 |𝐻𝑥 =0 =  𝐶𝑓6( 𝐶𝑓5 + (1   𝐶𝑓5).  𝐻𝑥 ) 

 
 

   𝑊 + 

(1     𝑊). ( 𝐶𝑓6( 𝐶𝑓5 +

(1   𝐶𝑓5).  𝐻𝑥 ))  

T1 𝑄𝑠𝑦𝑠|𝑇 =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |𝑇 =0 

𝑄𝐺 |𝑇 =0
=  𝐶𝑓6.  𝐶𝑓5|𝑇 =0 +  𝐶𝑓5|𝑇 =0. (1   𝐶𝑓6).  𝐻𝑥 
+ (1   𝐶𝑓5|𝑇 =0).  𝐻𝑥 .  𝐶𝑓6
+ (1   𝐶𝑓5|𝑇 =0).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6) 

𝑄𝐶𝑓5|𝑇 =0 =  𝐶𝑓  

   𝑊 + 
(1     𝑊). ( 𝐶𝑓6.  𝐶𝑓 
+  𝐶𝑓 . (1   𝐶𝑓6).  𝐻𝑥 
+ (1   𝐶𝑓 ).  𝐻𝑥 .  𝐶𝑓6
+ (1   𝐶𝑓 ).  𝐻𝑥 .𝐻𝑥 . (1

  𝐶𝑓6)) 

P1 𝑄𝑠𝑦𝑠|  =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |  =0 

𝑄𝐺 |  =0
=  𝐶𝑓6.  𝐶𝑓5|  =0 +  𝐶𝑓5|  =0. (1   𝐶𝑓6).  𝐻𝑥 
+ (1   𝐶𝑓5|  =0).  𝐻𝑥 .  𝐶𝑓6
+ (1   𝐶𝑓5|  =0).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6) 

𝑄𝐶𝑓5|  = = 1  (1   𝐶𝑓 |  = )(1   𝑇 ) 

𝑄𝐶𝑓 |  =0 =   

   𝑊
+ (1     𝑊). [ 𝐶𝑓6.  𝑇 
+  𝑇 . (1   𝐶𝑓6).  𝐻𝑥 
+ (1   𝑇 ).  𝐻𝑥 .  𝐶𝑓6
+ (1   𝑇 ).  𝐻𝑥 .𝐻𝑥 . (1

  𝐶𝑓6)] 

                                                                                                

P2 𝑄𝑠𝑦𝑠|  =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |  =0 

𝑄𝐺 |  =0
=  𝐶𝑓6.  𝐶𝑓5|  =0 +  𝐶𝑓5|  =0. (1   𝐶𝑓6).  𝐻𝑥 
+ (1   𝐶𝑓5|  =0).  𝐻𝑥 .  𝐶𝑓6
+ (1   𝐶𝑓5|  =0).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6) 

𝑄𝐶𝑓5|  = = 1  (1   𝐶𝑓 |  = )(1   𝑇 ) 

𝑄𝐶𝑓 |  =0 =   

   𝑊
+ (1     𝑊). [ 𝐶𝑓6.  𝑇 
+  𝑇 . (1   𝐶𝑓6).  𝐻𝑥 
+ (1   𝑇 ).  𝐻𝑥 .  𝐶𝑓6
+ (1   𝑇 ).  𝐻𝑥 .𝐻𝑥 . (1
  𝐶𝑓6)] 

                                                                                                                                                                                               

S1 𝑄𝑠𝑦𝑠|  =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |  =0    𝑊 + (1     𝑊).  

[[1  (1   𝐶𝑓 ) (1  

 𝐶𝑓4)].  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓 )(1  
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𝑄𝐺 |  =0
=  𝐶𝑓6|  =0.  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|  =0).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|  =0
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|  =0) 

𝑄𝐶𝑓6|  =0 = 1  (1   𝐶𝑓 |  =0)(1   𝐶𝑓 ) (1  
 𝐶𝑓4) 

𝑄𝐶𝑓 |  =0 =   

 𝐶𝑓4).  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . [1  (1   𝐶𝑓 ) (1  

 𝐶𝑓4)] + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  

 𝐶𝑓 ) (1   𝐶𝑓4)]  

S2 𝑄𝑠𝑦𝑠|  =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |  =0 

𝑄𝐺 |  =0
=  𝐶𝑓6|  =0.  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|  =0).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|  =0
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|  =0) 

𝑄𝐶𝑓6|  =0 = 1  (1   𝐶𝑓 |  =0)(1   𝐶𝑓 ) (1  
 𝐶𝑓4) 

𝑄𝐶𝑓 |  =0 =   

   𝑊 + (1     𝑊).  

[[1  (1   𝐶𝑓 ) (1  

 𝐶𝑓4)].  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓 )(1  

 𝐶𝑓4).  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . [1  (1   𝐶𝑓 ) (1  

 𝐶𝑓4)] + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  

 𝐶𝑓 ) (1   𝐶𝑓4)]  

Comp 𝑄𝑠𝑦𝑠|𝐶 𝑚 =0
=    𝑊 + (1     𝑊). 𝑄𝐺 |𝐶 𝑚 =0 

𝑄𝐺 |𝐶 𝑚 =0
=  𝐶𝑓6|𝐶 𝑚 =0.  𝐶𝑓5
+  𝐶𝑓5. (1   𝐶𝑓6|𝐶 𝑚 =0).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|𝐶 𝑚 =0
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|𝐶 𝑚 =0) 

𝑄𝐶𝑓6|𝐶 𝑚 =0
= 1  (1   𝐶𝑓 )(1   𝐶𝑓 |𝐶 𝑚 =0)(1   𝐶𝑓4) 

𝑄𝐶𝑓 |𝐶 𝑚 =0 = 1  (1     ). (1   𝑀 𝑡  ). 

(1   𝐹𝑎𝑛). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

   𝑊 + (1     𝑊). {[1  (1  

   ). (1   𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1  
   ). (1   𝑇 ). (1   𝑉 )].  𝐶𝑓5 +

 𝐶𝑓5. (1     ). (1   𝑀 𝑡  ). (1  

 𝐹𝑎𝑛). (1     ). (1   𝑇 ). (1  

 𝑉 )  𝐻𝑥 + (1   𝐶𝑓5).  𝐻𝑥 . [1  

(1     ). (1   𝑀 𝑡  ). (1  
 𝐹𝑎𝑛). (1     ). (1   𝑇 ). (1  

 𝑉 )] + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  

   ). (1   𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1  

   ). (1   𝑇 ). (1   𝑉 )}  

 

R1 𝑄𝑠𝑦𝑠|  =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |  =0 

𝑄𝐺 |  =0
=  𝐶𝑓6|  =0.  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|  =0).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|  =0
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|  =0) 

𝑄𝐶𝑓6|  =0
= 1  (1   𝐶𝑓 )(1   𝐶𝑓 |  =0)(1   𝐶𝑓4) 

𝑄𝐶𝑓 |  =0 = 1  (1   𝐶 𝑚 ). (1   𝑀 𝑡  ). 

(1   𝐹𝑎𝑛). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

   𝑊 + (1     𝑊). {[1  (1  

 𝐶 𝑚 ). (1   𝑀 𝑡  ). (1  

 𝐹𝑎𝑛). (1     ). (1   𝑇 ). (1  

 𝑉 )].  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  
 𝑇 ). (1   𝑉 )  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . [1  (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  
 𝑇 ). (1   𝑉 )] + (1  

 𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  
 𝑇 ). (1   𝑉 )}  

 

Fan 𝑄𝑠𝑦𝑠|𝐹𝑎𝑛=0 =    𝑊 + (1     𝑊). 𝑄𝐺 |𝐹𝑎𝑛=0 

𝑄𝐺 |𝐹𝑎𝑛=0
=  𝐶𝑓6|𝐹𝑎𝑛=0.  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|𝐹𝑎𝑛=0).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|𝐹𝑎𝑛=0
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|𝐹𝑎𝑛=0) 

𝑄𝐶𝑓6|𝐹𝑎𝑛=0
= 1  (1   𝐶𝑓 )(1   𝐶𝑓 |𝐹𝑎𝑛=0)(1   𝐶𝑓4) 

𝑄𝐶𝑓 |𝐹𝑎𝑛=0 = 1  (1   𝐶 𝑚 ). (1   𝑀 𝑡  ). 

(1     ). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

   𝑊 + (1     𝑊). {[1  (1  

 𝐶 𝑚 ). (1   𝑀 𝑡  ). (1     ). (1  

   ). (1   𝑇 ). (1   𝑉 )].  𝐶𝑓5 +

 𝐶𝑓5. (1   𝐶 𝑚 ). (1   𝑀 𝑡  ). (1  

   ). (1     ). (1   𝑇 ). (1  

 𝑉 )  𝐻𝑥 + (1   𝐶𝑓5).  𝐻𝑥 . [1  

(1   𝐶 𝑚 ). (1   𝑀 𝑡  ). (1  

   ). (1     ). (1   𝑇 ). (1  

 𝑉 )] + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  
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  𝐶 𝑚 ). (1   𝑀 𝑡  ). (1     ). (1  

   ). (1   𝑇 ). (1   𝑉 )}  

 

Motor 𝑄𝑠𝑦𝑠|𝑀 𝑡  =0
=    𝑊 + (1     𝑊). 𝑄𝐺 |𝑀 𝑡  =0 

𝑄𝐺 |𝑀 𝑡  =0
=  𝐶𝑓6|𝑀 𝑡  =0.  𝐶𝑓5
+  𝐶𝑓5. (1   𝐶𝑓6|𝑀 𝑡  =0).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|𝑀 𝑡  =0
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|𝑀 𝑡  =0) 

𝑄𝐶𝑓6|𝑀 𝑡  =0
= 1  (1   𝐶𝑓 )(1   𝐶𝑓 |𝑀 𝑡  =0)(1   𝐶𝑓4) 

𝑄𝐶𝑓 |𝑀 𝑡  =0 = 1  (1   𝐶 𝑚 ). (1     ). 

(1   𝐹𝑎𝑛). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

   𝑊 + (1     𝑊). {[1  (1  

 𝐶 𝑚 ). (1     ). (1   𝐹𝑎𝑛). (1  

   ). (1   𝑇 ). (1   𝑉 )].  𝐶𝑓5 +

 𝐶𝑓5. (1   𝐶 𝑚 ). (1     ). (1  

 𝐹𝑎𝑛). (1     ). (1   𝑇 ). (1  
 𝑉 )  𝐻𝑥 + (1   𝐶𝑓5).  𝐻𝑥 . [1  

(1   𝐶 𝑚 ). (1     ). (1  

 𝐹𝑎𝑛). (1     ). (1   𝑇 ). (1  
 𝑉 )] + (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1  

 𝐶 𝑚 ). (1     ). (1   𝐹𝑎𝑛). (1  

   ). (1   𝑇 ). (1   𝑉 )}  

 

R2 𝑄𝑠𝑦𝑠|  =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |  =0 

𝑄𝐺 |  =0
=  𝐶𝑓6|  =0.  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|  =0).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|  =0
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|  =0) 

𝑄𝐶𝑓6|  =0
= 1  (1   𝐶𝑓 )(1   𝐶𝑓 |  =0)(1   𝐶𝑓4) 

𝑄𝐶𝑓 |  =0 = 1  (1   𝐶 𝑚 ). (1   𝑀 𝑡  ). 

(1   𝐹𝑎𝑛). (1     ). 
(1   𝑇 ). (1   𝑉 ) 

 

   𝑊 + (1     𝑊). {[1  (1  

 𝐶 𝑚 ). (1   𝑀 𝑡  ). (1  

 𝐹𝑎𝑛). (1     ). (1   𝑇 ). (1  
 𝑉 )].  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  
 𝑇 ). (1   𝑉 )  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . [1  (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  

 𝑇 ). (1   𝑉 )] + (1  

 𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  
 𝑇 ). (1   𝑉 )}  

 

T2 𝑄𝑠𝑦𝑠|𝑇 =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |𝑇 =0 

𝑄𝐺 |𝑇 =0
=  𝐶𝑓6|𝑇 =0.  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|𝑇 =0).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|𝑇 =0
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|𝑇 =0) 

𝑄𝐶𝑓6|𝑇 =0
= 1  (1   𝐶𝑓 )(1   𝐶𝑓 |𝑇 =0)(1   𝐶𝑓4) 

𝑄𝐶𝑓 |𝑇 =0 = 1  (1   𝐶 𝑚 ). (1   𝑀 𝑡  ). 

(1   𝐹𝑎𝑛). (1     ). 
(1     ). (1   𝑉 ) 

 

   𝑊 + (1     𝑊). {[1  (1  

 𝐶 𝑚 ). (1   𝑀 𝑡  ). (1  

 𝐹𝑎𝑛). (1     ). (1     ). (1  

 𝑉 )].  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  

   ). (1   𝑉 )  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . [1  (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  

   ). (1   𝑉 )] + (1  

 𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  

   ). (1   𝑉 )}  

 

V1 𝑄𝑠𝑦𝑠|𝑉 =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |𝑉 =0 

𝑄𝐺 |𝑉 =0
=  𝐶𝑓6|𝑉 =0.  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|𝑉 =0).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|𝑉 =0
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|𝑉 =0) 

𝑄𝐶𝑓6|𝑉 =0
= 1  (1   𝐶𝑓 )(1   𝐶𝑓 |𝑉 =0)(1   𝐶𝑓4) 

𝑄𝐶𝑓 |  =0 = 1  (1   𝐶 𝑚 ). (1   𝑀 𝑡  ). 

(1   𝐹𝑎𝑛). (1     ). 

   𝑊 + (1     𝑊). {[1  (1  

 𝐶 𝑚 ). (1   𝑀 𝑡  ). (1  

 𝐹𝑎𝑛). (1     ). (1   𝑇 ). (1  

   )].  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  

 𝑇 ). (1     )  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . [1  (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  

 𝑇 ). (1     )] + (1  
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(1   𝑇 ). (1     ) 
 

 𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶 𝑚 ). (1  

 𝑀 𝑡  ). (1   𝐹𝑎𝑛). (1     ). (1  

 𝑇 ). (1     )}  

 

P3 𝑄𝑠𝑦𝑠|  =0 =    𝑊 + (1     𝑊). 𝑄𝐺 |  =0 

𝑄𝐺 |  =0
=  𝐶𝑓6|  =0.  𝐶𝑓5 +  𝐶𝑓5. (1   𝐶𝑓6|  =0).  𝐻𝑥 
+ (1   𝐶𝑓5).  𝐻𝑥 .  𝐶𝑓6|  =0
+ (1   𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓6|  =0) 

𝑄𝐶𝑓6|  =0
= 1  (1   𝐶𝑓 )(1   𝐶𝑓 )(1   𝐶𝑓4|  =0) 

𝑄𝐶𝑓4|  =0 =   

   𝑊 + (1     𝑊). [[1  (1  

 𝐶𝑓 ). (1   𝐶𝑓 )].  𝐶𝑓5 +

 𝐶𝑓5. (1   𝐶𝑓 )(1  

 𝐶𝑓 ).  𝐻𝑥 + (1  

 𝐶𝑓5).  𝐻𝑥 . [1  (1   𝐶𝑓 ). (1  

 𝐶𝑓 )] + (1  

 𝐶𝑓5).  𝐻𝑥 .𝐻𝑥 . (1   𝐶𝑓 )(1  

 𝐶𝑓 )]  

 

Table 14:  the Probability of System Failure dependent upon each component functioning 

 

 

7     Conclusion 

 

This paper shows how the Birnbaum, Criticality, Risk Assessment Worth and Risk Reduction Worth 

component importance measures can be calculated when the system failure modelling has been 

accomplished using a fault tree which is evaluated using the D2T2 methodology.  The calculation 

process can be implemented very efficiently, the majority of the computational effort goes into 

e aluating Birnbaums’  easure of  mportance, also  no n as the Criticality Function, 𝐺 (𝒒(𝒕)).  This 

takes advantage of the efficient hierarchical structure of independent modules created by the D2T2 

framework.  The criticality functions of each of the independent modules, with respect to their input 

variables, are obtained and the calculation of 𝐺 (𝒒(𝒕)) becomes the product of the relevant module 

criticality functions. 

 

Once 𝐺 (𝒒(𝒕)) has been evaluated there is relatively little computational effort required to calculate 

the Criticality measure of importance rankings, 𝐼 
𝐶. 

 

For the Risk Assessment Worth, 𝐼 
 𝐴𝑊 and Risk Reduction Worth, 𝐼 

  𝑊 additional calculations have to 

be performed to calculate 𝑸𝒔𝒚𝒔(𝟏𝒊 𝒒(𝒕)).  Again this can be carried out efficiently by re-using the 

intermediate module probabilities calculated during the original execution of the D2T2 methodology to 

deliver the top event probability and frequency.  𝑸𝒔𝒚𝒔(𝟏𝒊 𝒒(𝒕)) is obtained by repeating the top event 

quantification conditional on each component having failed.  𝑸𝒔𝒚𝒔(𝟏𝒊 𝒒(𝒕)) is then used directly to 

produce the Risk Assessment Worth. 

 

Subtracting  𝑸𝒔𝒚𝒔(𝟏𝒊 𝒒(𝒕)) from 𝐺 (𝒒(𝒕)) gives a rapid calculation of  𝑸𝒔𝒚𝒔(𝟎𝒊 𝒒(𝒕)) which enables 

the Risk Reduction Worth measure to be calculated. 

 

Having incorporated the calculation of importance measures into the D2T2 methodology it extends the 

current analysis capability to provide quantifiable measures which can be interpreted to identify the 

weaknesses in the system.  Changes can then be implemented which improve system performance.  

For this implementation, the system assessed can feature dependencies between the components, 

complex maintenance processes and components with any distributions of times to failure or repair.  

From a practical point of view this new advance enables system performance to be improved making 

the systems safer by using the available resources in the most effective way. 
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