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Abstract: High-throughput plant phenotyping in controlled environments (growth chambers and
glasshouses) is often delivered via large, expensive installations, leading to limited access and the
increased relevance of “affordable phenotyping” solutions. We present two robot vectors for automated
plant phenotyping under controlled conditions. Using 3D-printed components and readily-available
hardware and electronic components, these designs are inexpensive, flexible and easily modified
to multiple tasks. We present a design for a thermal imaging robot for high-precision time-lapse
imaging of canopies and a Plate Imager for high-throughput phenotyping of roots and shoots of
plants grown on media plates. Phenotyping in controlled conditions requires multi-position spatial
and temporal monitoring of environmental conditions. We also present a low-cost sensor platform
for environmental monitoring based on inexpensive sensors, microcontrollers and internet-of-things
(IoT) protocols.
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1. Introduction

Plant phenotyping—the assessment of complex plant traits (architecture, growth, development,
physiology, yield, etc.) and quantification of parameters underlying those traits [1–3]—is a rapidly
developing transdiscipline of vital importance when addressing issues of global food security [4,5].
High-throughput phenotyping in controlled environments (growth chambers and glasshouses) is often
delivered via large, expensive installations, leading to limited access and an increased relevance of
“affordable phenotyping” solutions [6,7]. The availability of low-cost microcontrollers and automation
components developed for the Maker community, combined with the ease of fabrication of 3D-printed
parts allows low-cost, flexible phenotyping vector platforms to be designed for more widespread
adoption [8]. We present two robotic vectors that carry sensors for plant phenotyping under controlled
conditions—a linear actuator to position a thermal camera and a plate imaging robot designed to carry
an RGB camera to image plate-grown plants such as the model species Arabidopsis thaliana. Each vector
is designed for a specific task and is of inexpensive, modular construction, allowing re-design and
re-purposing for other phenotyping activities as necessary.

When phenotyping in controlled conditions, spatial and temporal environmental sensor data
are essential for correct interpretation of results [9]. We also present a low-cost sensor platform for
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monitoring environmental conditions over a range of phenotyping setups based on inexpensive sensors,
microcontrollers and internet-of-things (IoT) protocols.

2. Automated Vectors

Both vectors are based on the “belt-and-pinion” linear drive principle, whereby a motor mounted
on a wheeled carriage drives a timing belt that passes over the timing pulley and under the carriage
wheels. The wheels then act as idler pulleys to prevent the belt losing tension (Figure 1). For increased
torque and positional accuracy, a stepper motor is employed to propel the carriage and payload along
a rigid drive rail. This simple configuration allows longer travel lengths and rapid carriage movement
compared to leadscrew designs.
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Figure 1. Belt-and-pinion drive system. The timing belt (red) passes under the drive wheels and over
the timing pulley to maintain tension in the belt. Drawing files from [10].

This design has been developed and adopted by the Maker community for home-built computer
numerical control (CNC) machines and plotters [10] and compatible parts are readily available. A list
of components used in each design is given in Table 1. Custom parts are 3D printed to reduce cost
and allow flexibility and re-configuration for alternative sensor payloads or additional deployment
modes. Files for all 3D-printed components are available at https://github.com/UoNMakerSpace/.
All parts were printed using a fused filament fabrication 3D printer (Model S5, Ultimaker) using tough
polylactic acid (PLA) filament.

Both designs utilize microcontrollers to generate the signals to the drivers that control the
stepper motor—these controllers also provide input/output signals for limit switches used as both
emergency stops and home sensors. The microcontrollers themselves also trigger, configure and
collect data from the sensor and provide a user-friendly interface to set experimental acquisition
parameters. Microcontroller sketches and control software examples are available at https://github.
com/UoNMakerSpace/.

https://github.com/UoNMakerSpace/
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Table 1. Components for the automated plant phenotyping vectors.

Component Specifications Model/Filename Manufacturer

Thermal Imager

Stepper motor Bipolar, 1.8◦ step angle, 1.68 A/phase MT-1704HS168A Motec
Microcontroller 16 MHz ATmega328P Arduino Uno R3 Arduino
Driver carrier Arduino shield for removable drivers CNC Shield V3 Various
Stepper driver Max 32 microsteps, 2.5 A, 12−40 V DRV8825 Texas Instruments

Drive belt 7 mm width; 2 mm pitch GT2-2M OpenBuilds
Timing pulley 20 teeth; 2 mm pitch GT2-2M OpenBuilds
Carriage rail V-slot profile 40 × 20 OpenBuilds

Carriage wheels 15.2 mm outside diameter (OD), Delrin Mini V Wheel OpenBuilds

Carriage plate 3D printed therm_cm.stl 1,
therm_cps.stl UoN 2

Sensor holder 3D printed therm_s_flir.stl UoN
Electronics box 3D printed therm_case.stl UoN
Limit switches Hall-effect sensor, unipolar, 4.5−24 V MP101402 Cherry

Sensor Thermal camera 19 mm lens, 24◦ field of view A35 (60 Hz) FLIR

Plate Imager

Stepper motor Bipolar, 1.8◦ step angle, 1.68 A/phase MT-1704HS168A Motec
Microcontroller 72 MHz Cortex-M4 Teensy 3.2 PJRC
Stepper driver Max 32 microsteps, 3.5 A, 8–45 V TB6600 Toshiba

Drive belt 7 mm width; 2 mm pitch GT2-2M OpenBuilds
Timing pulley 20 teeth; 2 mm pitch GT2-2M Openbuilds
Carriage rail V-slot profile 40 × 20 OpenBuilds

Carriage wheels 15.2 OD, Delrin Mini V Wheel OpenBuilds
Carriage plate 3D printed plate_carriage.stl 3 UoN
Sensor holder 3D printed plate_sm.stl UoN

Light baffle 3D printed plate_baffle(1−3).stl UoN
Electronics box 3D printed plate_case(1−3).stl UoN
Limit switches Hall-effect sensor, omnipolar, 2.5−5 V AH180 Diodes Inc.

Sensor FireWire camera, 8 mm lens Stingray AVT
1 Files available at: https://github.com/UoNMakerSpace/thermal-imager-hardware. 2 UoN: 3D printed at the
University of Nottingham. 3 Files available at: https://github.com/UoNMakerSpace/plate-imager-hardware.

2.1. Thermal Imager

The Thermal Imager is a simple linear robot designed to position a thermal camera (FLIR A35
(60 Hz)) over the canopies of plants grown in trays or pots on a standard controlled environment room
shelf (Figure 2). High-throughput top-view imaging of plants can be used to measure morphological
properties, such as shape and size and how these parameters develop over time [11]. The use of
thermal sensors enables the measurement of physiological processes such as stomatal function [12]
and responses to disease [13]. With a 19 mm lens, the field of view of the sensor is approximately
220 × 300 mm when mounted 80 cm above the canopy to be imaged.

2.1.1. Mechanical Components

The Thermal Imager comprises a horizontally-arranged aluminium carriage rail (V-slot profile,
OpenBuilds) onto which is located a wheeled carriage assembled from two carriage plates. The carriage
plates are 3D-printed parts with mounting holes for a NEMA17 bipolar stepper motor on one plate
and a sensor attachment fitting on the other. Guide wheels are mounted between the plates and
locate in the slot of the carriage rail (see Figure 1). The carriage rail is mounted on two supports
fabricated from the same aluminium profile but any sturdy support will suffice. The use of aluminium
profile allows easy adjustment of both carriage rail height (to adjust the sensor field-of-view) and
orientation of the carriage rail (for example to a side-imaging mode to allow use with non-rosette
species such as wheat, rice and barley). Files for the 3D-printed components are available at:
https://github.com/UoNMakerSpace/thermal-imager-hardware.

https://github.com/UoNMakerSpace/thermal-imager-hardware
https://github.com/UoNMakerSpace/plate-imager-hardware
https://github.com/UoNMakerSpace/thermal-imager-hardware
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2.1.2. Electrical/Control Components

The motor control system is based on a microcontroller development board (Arduino Uno
R3)—this incorporates a 16 MHz ATmega328P controller on an inexpensive breakout board with
multiple input/output connections including a USB serial connection to a host PC or laptop [14].
An expansion shield (CNC Shield V3) is connected to the board to allow deployment of up to three
stepper motor drivers in the widely-used “StepStick” format [15] and multiple limit switches. The motor
driver selected for this system (DRV8825, TI) can be configured to single stepping, 1/2, 1/4, 1/8, 1/16 or
1/32 microsteps and operates at a maximum drive current of 2.5 A at 24 V. Two unipolar Hall-effect
sensors are wired to the shield and fixed at either end of the carriage plate. The sensors are triggered
by magnets fixed to the carriage rail to act as home and limit switches. All electronic components
are housed in a 3D-printed case with connectors for the stepper motor, Hall-effect sensors and motor
power. The motor is powered by a 24 V, 2.71 A power adaptor. A full wiring schematic is given as
Figure S1.

The microcontroller board is powered by a USB connection to the host computer, which also
provides serial communication.

2.1.3. Software

The microcontroller runs a sketch written in the Arduino Integrated Development Environment [16]
that uses the AccelStepper library [17] to control the stepper motor. This sketch allows setting of
acceleration parameters for the motor, reads the state of the two limit switches and monitors the
serial connection. The limit switch at the furthest extent of travel is an emergency stop, with the
other sensor acting as a home switch—on triggering, it moves the carriage until the sensor is no
longer active and sets the final position as zero (“home”). On receiving a serial string with positional
information via the USB port, the carriage is moved to that position using the pre-defined acceleration
parameters to ensure a smooth acceleration and deceleration before stopping and acquiring an
image. Experimental parameters are set and the imaging sensor controlled by a program written
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in the LabVIEW development environment [18] running on the host computer. This provides a
user-friendly graphical interface for control of the vector (distances moved, time-lapse parameters,
etc.) and imaging sensor (Figure 3). The microcontroller sketch and LabVIEW software are available at
https://github.com/UoNMakerSpace/themal-imager-software. Once acquired, image sets are processed
for leaf temperature values at multiple points on each rosette using macros written for the ImageJ/FIJI
image analysis platforms [19,20].
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2.1.4. Performance and Results

Operating characteristics of the Thermal Imager are given in Table 2. For comparison, characteristics
of a previously published research system [21] and a commercially available actuator are also given.
A standard experimental run with five imaging positions along the travel distance and a microstepping
size of 4 is completed in 38 s including the homing sequence (which runs at each timepoint to
improve repeatability). These settings give a positional accuracy of ~500 µm during extended running,
no measurable discrepancy in positioning was found. We estimate the repeatability of positioning at
~5 µm. Compared to the CPIB Imaging Robot [21], the Thermal Imager has improved repeatability,
speed, and temporal resolution, completing each imaging run in less than half the time. This can be
attributed to the use of microstepping by the Thermal Imager driver board—the Imaging Robot does
not use microstepping (cost-effective drivers were not available at the time of design), which impacts
resolution and repeatability. Despite the components costing only 20% of those used in the Imaging
Robot, the Thermal Imager design is thus an improvement in all operating characteristics. A typical
commercial actuator (Table 2) operating at the highest level of microstepping outperforms the Thermal
Imager in terms of speed and temporal resolution but at the cost of positional accuracy and hence
repeatability. Importantly, current commercial systems of this specification are relatively expensive,
in this case nearly 15 times more expensive than the system presented here.

https://github.com/UoNMakerSpace/themal-imager-software
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Table 2. Comparison of Thermal Imager specifications with competing (research and commercial) robots.

Specification Thermal Imager CPIB Imaging Robot [21] Commercial Actuator 1

Drive Belt and pinion Toothed belt Toothed belt

Travel 1.2 m 1.8 m 1.2 m

Step size 200 µm 300 µm 600 µm

Microstep size
(minimum) 6.25 µm (32 microsteps) 300 µm (n/a) 9.4 µm (64 microsteps)

Maximum speed 125 mm/s 30 mm/s 5 m/s

Repeatability ~5 µm 0.5 mm 200 µm

Temporal resolution ~40 s/run ~2 min/run ~8 s/run

Cost 2 €235 €1060 €3475
1 Model ZLW-1660, Igus GmbH. 2 Cost excludes camera and host PC.

An example output from the Thermal Imager is shown in Figure 4.
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Figure 4. Leaf temperatures of Arabidopsis thaliana rosettes recorded using the Thermal Imager. In total,
48 plants were imaged every 30 min for 136 h. For clarity, data for a single plant are shown (mean
of three spot measurements) at 2 h intervals. Dark bars show the night photoperiod. Inset: hourly
thermographs for the marked 24 h period.

2.2. Plate Imager

The Plate Imager is designed for the automated high-throughput imaging of plate-grown plants
in a standard growth room (Figure 5). Rather than continuous operation, it was designed for users to
bring multiple plates for imaging at discrete time points. This approach allows different users to image
many hundreds of plants using a single shared machine. With this in mind, the design focuses on
throughput rather than absolute positional accuracy. Once acquired, images are processed for root
system architectural traits using the RootTrace and RootNav analysis software suites [22–24].
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2.2.1. Mechanical Components

Using a similar drive system to the Thermal Imager, the Plate Imager is composed of a carriage
rail on which a belt and pinion-driven carriage translocates a machine vision RGB camera (Stingray,
AVT). The rail is 2 m in length, giving a working travel of 1.8 m, and allowing 14 standard 125 mm
square plates to be imaged in a run. The carriage plate assembly (Figure 5b) is made from 3D-printed
components and consists of a carriage plate to which is connected a sensor holder. When imaging plates,
reflections from the plate lid often obsure details—to lessen this effect, a baffle plate is fitted over the
front of the carriage with a cut-out for the imaging lens. This is covered in blackout material to remove
reflections from the lid of the plate. Plates are mounted using 3D-printed clips against a aluminium
profile bracket (covered in blackout material to provide contrast to plant roots). The carriage rail is
mounted to a free-standing frame constructed from aluminium profile with an LED lighting array
mounted above the drive rail to provide imaging illumination. Files for the 3D-printed components
are available at: https://github.com/UoNMakerSpace/plate-imager-hardware.

2.2.2. Electrical/Control Components

A limitation of the AccelStepper library and relatively low clock speed processors such as the
ATmega328P used by the Arduino Uno in the Thermal Imager is motor speed. The maximum steps

https://github.com/UoNMakerSpace/plate-imager-hardware
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per second at a clock frequency of 16 MHz is estimated at 4000 but in practice, this is difficult to
achieve [17]. To achieve higher motor speeds (and still utilize acceleration and deceleration), the Plate
Imager uses a development board with a processor than runs at a much higher clock speed (72 MHz
Cortex-M4 microcontroller; Arm Ltd). This board (Teensy 3.2, PJRC) uses 3.3 V signal voltages (rather
than the 5 V of the Arduino Uno) but is 5 V tolerant, so some common parts can be used in both
systems). Again, Hall-effect sensors are used as limit and home switches. In this design, the sensors are
connected at the extremes of the carriage rail and triggered by magnets fitted to the carriage. For this
device, 3.3 V-tolerant omnipolar sensors are used. Omnipolar sensors are advantageous in high-speed
systems as the sensor will be triggered by the opposite pole of the carriage magnet in the case of an
overrun. The stepper motor driver used in the Plate Imager is based on the TB6600 chip (Toshiba) that
allows a higher maximum motor current. The microcontroller and stepper driver boards are housed in
a 3D-printed enclosure with connectors for power, limit switches and a USB connection to the host
computer mounted in the support frame. The motor is powered by a 31 V, 2.4 A power adaptor. A full
wiring schematic is given as Figure S2.

2.2.3. Software

To exploit the faster clock frequency of the Cortex-M4 microcontroller, a high-speed driver library
(TeensyStep, [25]) was used in the microcontroller sketch software. This allows a theoretical motor
speed of 300,000 steps per second with acceleration/deceleration control. User control of experimental
parameters (plate diameter, delay between images, save directory) is via a LabVIEW program running
on the host PC. This interface also allows monitoring and setting of camera attributes. Images are
saved in individual directories for each plate position with unique filenames including acquisition
time and date. Experimental settings can be saved as a configuration file and re-loaded on subsequent
experimental runs, ensuring that image sets are appended to the same directory. The microcontroller
sketch and LabVIEW code are available at https://github.com/UoNMakerSpace/plate-imager-software.

2.2.4. Performance

Characteristics of the Plate Imager are given in Table 3. For comparison, characteristics of a
previously published research system [26] and a typical commercially-available actuator are also given.

Table 3. Comparison of Plate Imager specifications with competing (research and commercial) robots.

Specification Plate Imager CPIB Imaging Platform [26] Commercial Actuator 1

Drive Belt and pinion Leadscrew Toothed belt

Travel 1.5 m 1.5 m 1.495 m

Step size 200 µm 31.75 µm 270 µm

Microstep size
(minimum) 6.25 µm (32 microsteps) 0.5µm (64 microsteps) 4.2 µm (64 microsteps)

Maximum speed 300 mm/s 60 mm/s 2000 mm/s

Repeatability ~5 µm <2 µm <20 µm

Temporal resolution 68 s/run ~5 mins/run ~20 s/run

Cost 2 €780 €4560 €2904
1 Model X-BLQ1495-E01, Zaber Technologies, Inc. 2 Cost excludes camera and host PC.

The Plate Imager outperforms the CPIB Imaging Robot (see Table 2) in all measured parameters.
Compared to a research unit for plate imaging based on a leadscrew design [26], the new design
has a slightly lower repeatability due to the larger microstep size (Table 3). However, the higher
positional accuracy of a leadscrew design results in a slower system and the maximum speed of
the Imaging Platform is 20% of that of the Plate Imager, leading to a similar increase in the time
required for an experimental run. Leadscrew systems are also relatively expensive—components

https://github.com/UoNMakerSpace/plate-imager-software
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for the Imaging Platform cost nearly 6 times as much as the Plate Imager (Table 3). Compared to
a belt-driven commercial design, the Plate Imager has a smaller minimum microstep size and thus
improved repeatability. The commercial model is capable of higher maximum speeds, reflected in
an improved temporal resolution. Although the commercial model is cheaper than the leadscrew
platform, it is nearly 4 times more expensive than the Plate Imager.

3. IoT Environmental Sensor Logger

Network-enabled wireless sensor devices are a rapidly expanding market, found throughout
homes [27], businesses, and agriculture [28] and increasingly in research environments [29]. This has
led to a number of readily available, low-cost IoT components with a rich ecosystem of hardware
components and software libraries. We have taken advantage of this expansion to design a highly
modular platform that can host a range of environmental sensors from subdollar to highly-calibrated
domain specific sensors costing tens to hundreds of dollars. The platform is also modular with respect
to communication platform, designed to operate in its default instance with readily available WiFi but
able to be adapted to long-range radio systems (XBee/LoRa/GSM) and deployed into remote locations.

3.1. Hardware

The initially developed unit (Figure 6) is a low-cost instantiation of the platform designed to be
deployed at high numbers into plant growth facilities in a large academic department. The core of the
unit is an ESP32-based microprocessor [30] which allows data from sensors connected via multiple
devices busses to be relayed over built-in WiFi hardware. The sensor module is an ultra-low-power
unit that measures ambient temperature, relative humidity, barometric pressure and air quality (model
BME680 [31]). This sensor can be interfaced with using I2C or SPI serial communication protocols and is
widely available on breakout boards to simplify deployment (Figure 6a). The utility of pressure and air
quality logging is limited in phenotyping installations and a cheaper sensor (BME280 [32]) is available
with similar characteristics for temperature and humidity measurement (Table 4). For comparison,
specifications of a commercial standalone sensor and a WiFi-enabled datalogger are also shown.

Table 4. Sensor and logging characteristics.

Specification BME680 BME280 [32] TinyTag Ultra 2 WiFi Logger 1 [33]

Humidity range 0–100% rh 20−80% rh 0 to 95% rh 0–100% rh

Humidity accuracy ±3% rh ±3% rh ±3% rh ±4.0% rh

Humidity response time 8 s 1 s ~10 s n/a

Temperature range −40 to 85 ◦C −40 to 85 ◦C −25 to +85 ◦C −20 to 60 ◦C

Temperature accuracy (25 ◦C) ±0.5 ◦C ±0.5 ◦C ±0.4 ◦C ±0.8 ◦C

Minimum time between readings 102 s 1 s 10 s

Maximum readings 250,000 3 32,000 500,000

Battery life 1 month 4 1 year 1 year

Online reporting yes no yes

Cost €19 €11 €135 €133
1 Model OM-EL-WIFI-TH-PLUS, OMEGA Engineering, Inc. 2 This figure represents the minimum duty cycle time
of the unit to read the sensors, store the results and relay over WiFi to a test connection; in network connected mode
readings are batched and sent to the network with WiFi authentication time dependent on network configuration
(connection to WPA2-Enterprise networks can take up to 20 s). 3 This figure is for permanent storage on the
unit, acting in logging mode or when not connected to the network. 4 This is at a logging interval of 60 s with a
1500 mAh battery.

A printed circuit board (PCB) was designed for deployment of the sensor unit assembly to
allow the use of inexpensive, pre-soldered components. The board consists of headers for the
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ESP32 development board, RTC module, sensor module, and a battery holder for an 18650 LiFePO4

battery. Headers are included for a voltage divider circuit to monitor battery voltage, two i2c
bus connections for additional sensors and diagnostic unit connection, and serial device headers
for connection of future domain specific hardware. Electrical schematics are shown in Figure S3
and a populated PCB in Figure 6. Schematics and fabrication files for the PCB are available at
https://github.com/UoNMakerSpace/sensor-platform-hardware.Sensors 2020, 19, x FOR PEER REVIEW  10 of 15 
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rechargeable battery.

3.2. Software

The ESP32 hosts a range of runtime environments with their own system libraries and languages,
including JavaScript, Python, Lua, and C++. Our platform is environment and language agnostic,
requiring only that the chosen suite can provide a network interface via MQTT(S) and HTTP(S) and can
connect to a WiFi network via the security mechanism in place in the monitored environment. The test
instantiation is written in C++ using the manufacturer default operating system with Arduino libraries
(https://github.com/UoNMakerSpace/psn-node) compiled and uploaded via PlatformIO. The ESP32,
like most true IoT units is headless, communicating bidirectionally with host development platforms
over serial connections. For this reason, unit administration of the devices, such as maintaining

https://github.com/UoNMakerSpace/sensor-platform-hardware
https://github.com/UoNMakerSpace/psn-node
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WiFi credentials and server addresses, is generally a laborious task requiring either a development
platform or an insecure setup mode accessible with local, private Bluetooth or WiFi networks. We have
developed for the platform a simple administration app, written in C# and using WPF libraries
(https://github.com/UoNMakerSpace/psn-node-admin), to provide an administration interface for
effective, secure, off-line administration. Given the austere locations the units are planned to be
deployed into, the variability of wireless communication, and the necessity to conserve battery life, if a
connection attempt fails the unit will rapidly timeout, and store the sensor data with the timestamp
and send the data on the next successful connection. Units can relay simple debugging messages,
such as battery strength, connection signal strength, and number of failed network connections to the
server for online monitoring purposes. A simple administration unit can also be connected to the unit
for in-field interrogation of debug messages, in the unlikely event of an edge-case connection issue.

3.3. Network

Deployed devices relay sensor readings and diagnostic messages in a common, self-describing
format using JSON to backend server-side software components (Figure 7). These consist of a message
router which processes MQTT PubSub messages and relays them, again using a common described
format to a database interface layer, where messages are written into a backend datastore. We have
found MQTT to be highly efficient on units with limited processing power, offering reliable probe-driven
bi-directional communication, with the backend. In the event of an issue with MQTT communication,
the unit can fall back to classic HTTP-POST communication, using the same message format.
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The platform does not proscribe the backend datastore, offering flexibility to integrate with
existing deployed technologies. For ease of deployment and testability, the initial instantiation
combines message routing and data layer into a self-contained unit, backed by a SQL database
(https://github.com/UoNMakerSpace/psn-logger, https://github.com/UoNMakerSpace/psn-server).
Data are made accessible to the end users by a web server component, written in PHP, which allows a
user to interrogate probe data using a web browser. Other dissemination routes are planned, using
access to the datastore via REST to provide live feed and notifications via a web or mobile app,
or using webservices to provide the logged environmental conditions for phenotyping experiments
into integrative stores (IS) such as PHIS [34] and PIPPA [35].

The server-side programs can run on the same hardware, but they can also be modified to allow
the message router to run on cheap frontend hardware—for instance, a RaspberryPi as in [36]—while
the database and webserver run in either dedicated server hardware, or a low-cost virtual machine
either on site or in the cloud. This provides a reliability advantage, with server components running in

https://github.com/UoNMakerSpace/psn-node-admin
https://github.com/UoNMakerSpace/psn-logger
https://github.com/UoNMakerSpace/psn-server
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a datacentre overseen by IT administrators whilst allowing the bespoke IoT-specific functionality to be
run closer to the units on the same network (with failover capability), and a cost advantage, as specific
server hardware need not be purchased and the frontend is running on low-cost hardware.

3.4. Performance

An example sensor log is shown in Figure 8.
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Figure 8. Data recorded by a probe over 182 h in a glasshouse. Green circles are percentage relative
humidity, blue circles are temperature (°C). Filled circles are data gathered by the probe in the glasshouse
(readings every 5 mins), open circles are from a calibrated weather station approximately 300 m away
(readings every 60 mins) for the same period showing external environmental conditions. 0 h was 12 pm
on a Saturday afternoon. Dark bars show the period after sunset, light bars the period after sunrise.

In Table 4, the platform, configured with two commonly available temperature sensors (Bosch
Sensortech BME680 and BME280, a 1500 mAh LiFePO4 rechargeable battery, and set to 1 min recording
interval), is compared to two popular commercially available environmental sensor units: Tinytag
Ultra 2 (Gemini Data Loggers TGU-4017) and OM-EL-WIFI-TH-PLUS (Omega Engineering). All the
units have similar operating ranges and accuracy, appropriate for their role measuring variables in
large environments. The platform developed here shows that despite its low cost, it is competitive
with more expensive commercial units in terms of numbers of readings that can be logged and in
mode of operation, the trade off with battery life as presented is due to a design requirement for the
test unit to log standard experimental runs, which in this case are a few weeks in duration. The run
duration is a factor of the logging interval, which, as tested here, is at a high frequency (60 h−1)—the
unit can perform approximately 30,000 measurements on a standard battery, or 60,000 on a large
capacity battery, which would see a lifetime in the several month range at a standard 10 minute logging
interval. Minimum reading time is controlled by two figures: the time to wake the unit, read the
sensors and determine the median reading for each (approximately 3 s), and a longer period connecting
to WiFi and a very rapid delay to relay signals (approximately 0.9 s). The connection to WiFi is a
complicated variable—simple secure authentication systems found on home-type routers or WiFi
hotspots can be connected to in <5 s (95th percentile), but complex WPA2-Enterprise based systems,
such as the academic eduroam system, can take 2-fold longer (90th percentile) or even 4-fold longer
(99th percentile) (data not shown). For this reason, to save power, the unit saves readings and connects
to WiFi at a regular frequency determined by a user-specified batching number. The unit could be
redesigned to step around the delay induced by WiFi connection time with an event based loop, but we
do not believe any of these sensors would accurately identify gross environmental parameters in a
large monitored space at subminute temporal resolution, and at this sampling frequency any unit
would quite rapidly deplete its battery.
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Figure 8 shows the performance of the test unit with a BME680 sensor and 5 min logging interval
over a week in a glasshouse, along with external measurements at 1 h logging intervals from a calibrated
weather station on the same campus. As can be seen, the temperature and humidity sensors perform
as expected for an environmental sensor, with little variability, and demonstrate how the glasshouse
environment is affected by external conditions.

4. Discussion

The vector platforms presented here are inexpensive and easily adapted for multiple use
cases. The use of readily-available mechanical and electronic components popularized by the
Maker community allows the deployment of bespoke systems at a fraction of the cost of the off-the-shelf
platforms. The platforms offer improvements to existing research designs and are comparable in
key performance characteristics to commercial models. The modular nature of the designs and the
extensive use of 3D-printed components means that the vectors can easily be re-purposed if required.

The sensor platform provides logging of low-cost environmental probes which can be deployed
at scale to provide complete fine-granularity coverage over a range of plant phenotyping facilities with
designed-in management and administration, and user-targeted distribution of real-time environmental
conditions. The platform is low cost, offers comparable features to commercial alternatives, and has
been designed to be as modular as possible, while retaining ease of deployment and management,
to ensure that it does not restrict deployment to measure any feasible environmental parameter or
growth environment.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/11/3319/s1,
Figure S1: Thermal Imager wiring schematic; Figure S2: Plate Imager wiring schematic; Figure S3: Sensor platform
PCB Schematic.
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