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Abstract Genetic improvement of quality traits in

tea (Camellia sinensis (L.) O. Kuntze) through con-

ventional breeding methods has been limited, because

tea quality is a difficult and expensive trait to measure.

Genomic selection (GS) is suitable for predicting such

complex traits, as it uses genome wide markers to

estimate the genetic values of individuals. We com-

pared the prediction accuracies of six genomic

prediction models including Bayesian ridge regression

(BRR), genomic best linear unbiased prediction

(GBLUP), BayesA, BayesB, BayesC and reproducing

kernel Hilbert spaces models incorporating the pedi-

gree relationship namely; RKHS-pedigree, RKHS-

markers and RKHS markers and pedigree (RKHS-

MP) to determine the breeding values for 12 tea

quality traits. One hundred and three tea genotypes

were genotyped using genotyping-by-sequencing and

phenotyped using nuclear magnetic resonance spec-

troscopy in replicated trials. We also compared the

effect of trait heritability and training population size

on prediction accuracies. The traits with the highest

prediction accuracies were; theogallin (0.59), epicat-

echin gallate (ECG) (0.56) and theobromine (0.61),

while the traits with the lowest prediction accuracies

were theanine (0.32) and caffeine (0.39). The perfor-

mance of all the GS models were almost the same,

with BRR (0.53), BayesA (0.52), GBLUP (0.50) and

RKHS-MP (0.50) performing slightly better than the

others. Heritability estimates were moderate to high

(0.35–0.92). Prediction accuracies increased with

increasing training population size and trait heritabil-

ity. We conclude that the moderate to high prediction

accuracies observed suggests GS is a promising
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approach in tea improvement and could be imple-

mented in breeding programmes.

Keywords Tea breeding � Genomic selection � Tea
quality

Introduction

Tea (Camellia sinensis (L.) O. Kuntze) quality is an

important attribute in a tea breeding programme. It is

the main determinant of price at the tea auction and is

measured based on the flavour and colour of the liquor

(hue) along with appearance of dry tea (leaf) (Zheng

et al. 2016). Flavour comprises of taste, mouthfeel and

aroma (Lawless and Heymann 2010). Taste of tea is

characterized by the astringency, bitterness, mellow-

ness and slight sweetness (Lee and Chambers 2007).

Mouth-feel is the heaviness, thickness and strength of

tea liquor, while aroma is influenced by more than 600

volatile compounds known to be present in tea (Zheng

et al. 2016). Taste, mouthfeel, colour and aroma are

important tea quality traits for consumer and are key

targets for selection in breeding programmes. These

tea attributes originate from biochemical compounds

present in fresh tea shoots such as catechins, alkaloids,

amino acids and volatile compounds (Borse 2012;

Chen et al. 2018a).

Genomic selection (GS) is a modern breeding

approach whereby models based on genome-wide

markers are used to estimates marker effects across the

entire genome to produce an estimate of the the

genetic values (Jannink et al. 2010; Meuwissen et al.

2001). GS models attempt to captures total additive

genetic variance across the entire genome to estimate

GEBVs among the selection candidates based on the

sum of all marker effects (Lorenz et al. 2011a).

Genomic estimated breeding values (GEBVs) of the

next generation of untested genotypes with only

genotypic information are computed using the con-

structed model and these are used for selection of

superior individuals without direct phenotypic evalu-

ation (Meuwissen et al. 2001). In GS, the number of

markers are usually greater than the number of

phenotypic measurements of the traits of interest,

hence there are more predictor variables compared to

phenotypes, hence creating a ‘‘large p and small n

problem’’ (Heffner et al. 2011). Statistical models that

have been developed to solve the problem of having

large numbers of molecular markers and fewer

phenotypes include ridge regression best linear unbi-

ased predictor (rrBLUP), genomic best linear unbiased

predictor (G-BLUP), the Bayesian models (BayesA,

BayesB, BayesC, BayesLASSO) and machine learn-

ing models (Wang et al. 2018). RRBLUP is compu-

tationally similar to genomic BLUP (GBLUP) and it

assumes that marker effects are equally shrunk and

normally distributed with the same variance (Meuwis-

sen et al. 2001). It is an infinitesimal model and

assumes that all the markers have small effects and

have non-zero variance. On the other hand, Bayesian

models assume the markers have different amounts of

variation and are more flexible while predicting traits

with different genetic architectures (Habier et al.

2011). Bayesian models are therefore suited for traits

that are controlled by few large-effect genes compared

to RRBLUP (Beaulieu et al. 2014; Meuwissen et al.

2001). BayesA and BayesLASSO assume that all

markers have a non-zero effect, and the marker

variances are derived from a scaled inverted chi-

square and double-exponential distributions, respec-

tively. Both BayesB and BayesC are variable selection

models since they are derived from two component

mixtures with a point of mass at zero that can either be

a scaled-t or a normal distributions, respectively

(Habier et al. 2011). The reproducing kernel Hilbert

spaces model (RKHS) is a semi-parametric approach

for genomic prediction and several studies have shown

its effectiveness in genomic predictions (Crossa et al.

2010; Juliana et al. 2017). It does not assume linearity

and therefore also captures some non-additive effects

well (Juliana et al. 2017).

GS models have successfully been developed for

predicting traits for many crops (Bassi et al. 2016;

Cerrudo et al. 2018; El-Dien et al. 2015; Grattapaglia

et al. 2018; Juliana et al. 2017; Müller et al. 2019;

Sverrisdóttir et al. 2017; Tan et al. 2017). GS can

potentially reduce the length of the tea breeding cycle

in tea and increase gains per unit time through early

selection, with the GS model being used to carry out

1–2 rounds of selection based on genotype alone,

before the need to rebuild the model due to the change

in allelic frequencies caused by selection. Koech et al.

(2020) applied machine learning models to estimate

the prediction accuracies of black tea quality and

drought tolerance traits in discovery and validation

populations. However, they used a limited number of
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markers (i.e. 1,421 DarTseq markers) and only

machine learning models were compared. There are

no reported studies of genomic selection in tea using

parametric models. Additionally, there is no evidence

of GS implementation in a tea breeding programme.

While several studies comparing the performance of

different prediction models have been reported in

many crops (Grattapaglia et al. 2018; Kwong et al.

2017; Lozada et al. 2019), our objective was to

compare the prediction accuracies of six genomic

prediction models including Bayesian Ridge Regres-

sion (BRR), genomic best linear unbiased prediction

(GBLUP), BayesA, BayesB, BayesC and reproducing

kernel Hilbert spaces models incorporating the pedi-

gree relationship namely; RKHS-pedigree (RKHS-P),

RKHS-markers (RKHS-M) and RKHS markers and

pedigree (RKHS-MP), to determine the breeding

values for 12 tea quality traits measured in two

different environments using Nuclear Magnetic Res-

onance (NMR). We also evaluated the effects of

training population size and heritability on the accu-

racy of GS. Lastly, we discussed how GS can be

implemented in a tea breeding programme.

Materials and methods

Plant materials and phenotyping

Genotypes used in this study consisted of 103 tea

varieties (clones), present in the UTK breeding

programme clonal field trials (CFTs) at Kericho

(0�220 S and 35�170 E), which is located at 2005

meters above sea level and replicated at Jamji (0�280 S
and 35�110 E), situated at 1733 meters above sea level.

Three replicates of each genotype was then pheno-

typed at each site using nuclear magnetic resonance

(NMR) spectroscopy for the 12 quality traits namely;

theobromine, caffeine, theogallin, gallic acid (GA),

epicatechin (EC), gallocatechin gallate (GCG), epi-

catechin gallate (ECG), epigallocatechin gallate

(EGCG), epigallocatechin (EGC), theanine, catechin

(C) and gallocatechin (GC) according to Le Gall et al.

(2004). Analysis of variance was conducted for all the

traits to estimate significant differences between the

genotypes. The mean values of the phenotypic data

used in this study are presented in (Table S1. 1). For

each of the trait, best linear unbiased predictors

(BLUPs) using their replicated data at each site were

generated using linear mixed models in R (R Core

2015). The restricted maximum likelihood (REML)

method was used to estimate variance components

assuming a random effect model using lme4 package

in R (R Core 2015). BLUP values were estimated for

each trait, by treating genotype and site as a random

effect.

Genotyping

GBS was used to genotype all the 103 genotypes in the

training population and was conducted at the Cornell

University Institute of Genomic Diversity. Green leaf

samples were collected early in the morning from the

CFTs, freeze-dried for 3 days and stored in waterproof

aluminum sachets. The freeze-dried samples were

then shipped to ADNid laboratories in France for DNA

extraction and quantification using the DNeasy 96

Plant Kit (QIAGEN). High-quality DNAwas then sent

to Cornell University’s Institute of Genomic Diversity

for genotyping using GBS. A multiplexed, high-

throughput GBS procedure was conducted according

to the procedure of Elshire et al. (2011). Sequence data

were obtained from 96-plex Illumina HiSeq2000 runs.

For genomic complexity reduction, the PstI restriction

endonuclease was used.

A total of 155 billion base pair of good barcoded

raw DNA sequence data were generated in GBS, with

an average of 2 million reads per genotype. TASSEL

UNEAK SNP calling algorithms (version 5.2.48) was

used to determine SNP polymorphism, resulting in

82,254 SNPs. Nature Source Improved Plants (NSIP)

applied an inhouse SNP calling algorithms to further

filter to leave a high quality 2779 SNP dataset by

decreasing error rate and increasing reliability (Pro-

fessor Steve Tanksley, Pers. com, May 2016, NSIP).

The SNP markers were then recoded as - 1, 0 and 1,

corresponding to homozygous minor alleles, heterozy-

gous and homozygous major alleles, respectively.

Individuals with not more than 20% missing SNPs

were selected and missing SNPs were imputed using

EM algorithms in R using the A.mat function in the

rrBLUP package (R Core 2015). A total of 2779 SNPs

from the 103-tea genotypes were used in the present

study.
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Relationship between the genotypes

All the statistical analysis was done in R (R Core

2015). To visualize the relatedness and population

structure among the 103 genotypes, the realized

genomic relationship matrix was created from the

genotype matrix using the ‘‘A. mat’’ function in R via

the rrBLUP (Endelman 2011). The kinship matrix for

the pedigrees was estimated using the GeneticsPed

package in R (Gorjanc et al. 2007). Principle compo-

nent analysis (PCA) was determined using the 2779

SNP markers and was estimated using the k-means

clustering function in R and the first two principle

components were plotted (R Core 2015).

Heritability estimation

Variance components and broad-sense heritability

were estimated on an entry mean basis using the

restricted maximum likelihood method (REML) with

all factors set as random effects, using the ASReml-R

version 4 package (Gilmour et al. 2015). Broad-sense

heritability was calculated as the ratio of total genetic

variance to total phenotypic variance. In multi-loca-

tion trial analysis, broad-sense heritability was calcu-

lated as;

r2g

ðr2gþ r2ge=eþ r2e=erÞ

where r2g is the genotypic variance component, r2ge

is the GxE variance component, r2e is the residual

variance and e and r are the number of environments

and replicates within each environment, respectively

(Zhang et al. 2017b).

Genomic heritability (h2g) was estimated based on

variance components estimated using the mixed

model (de los Campos et al. 2015). Genetic variance

was calculated as proportion of variance explained by

regressing markers on phenotypes. The model was

fitted in ASreml-R (Butler et al. 2009). Genomic

heritability was estimated as;

r2g

ðr2gþ r2eÞ

where r2g is the genotypic variance component and

r2e is the residual variance.

Prediction models

Six GS models namely, Bayesian Ridge regression

best linear unbiased predictor (BRR) (Endelman 2011;

Meuwissen et al. 2001), GBLUP (Endelman 2011),

BayesA (Meuwissen et al. 2001). BayesB, (Meuwis-

sen et al. 2001), BayesC (Meuwissen et al. 2001) and

reproducing kernel Hilbert space (RKHS) regression

(de los Campos and Pérez-Rodrı́guez 2016). The three

RKHS models that we implemented were; (1) RKHS

markers (RKHS-M) that involved using the G-matrix

calculated from markers, (2) RKHS-pedigree (RKHS-

P) that involved using the pedigree relationship matrix

which was obtained from the pedigree and was twice

the coefficient of ancestry, and (3) RKHS markers and

pedigree (RKHS-MP) with the marker and pedigree

relationship matrices as two kernels, where the

additive effect was captured by regression on the

markers and also with the (co)variance relationship

derived from the pedigree.

Prediction accuracies

The GBLUP model was performed using the ‘‘mixed.-

solve’’ function from the rrBLUP package (Endelman

2011). The other models were implemented using the

BGLR package with default settings for priors (de los

Campos and Pérez-Rodrı́guez 2016) in R version 4.0.3

(R Core 2015). The GS analysis in BGLR was set for

12,000 iterations and a burn-in setting of 2000. The

predictive accuracy of all the GS models was

estimated using a 5-fold cross-validation approach

for all the traits. The data was randomly divided into 5

subsections, and one subset was also used as a distinct

validation set (corresponding to 20% of the geno-

types), while the remaining four groups (80% of all the

genotypes) were used as training population for fitting

the GS models. This process was repeated, each time

with another subset, until all subsets had been used in

both training and validation steps. Each analysis was

repeated with 10 different cross-validation groupings

and the mean GEBVs for the 10 subsets was calcu-

lated. The accuracy of the GS models was estimated as

the Pearson correlation between the mean GEBVs and

the observed phenotypes (biochemical traits);

r(GEBV:y).
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Training population size

This study used the genomic best linear unbiased

prediction (GBLUP) model to test the effects of

training population size (TPS) on genomic prediction

accuracy. The GBLUP model was implemented using

the mixed.solve function of the rrBLUP package in R

(R Core 2015). Four levels of TPS (i.e., 20, 50, 80, and

90) were considered to evaluate the prediction accu-

racy of all the twelve traits. Similarly, the predictive

accuracy was estimated using a 5-fold cross-validation

approach, as the Pearson correlation between the

biochemical BLUEs (best linear unbiased estimates)

and its prediction from the GBLUP model.

Results

Descriptive statistics

All the quality traits for all the 103 genotypes were

analyzed using NMR spectroscopy. The mean (mg per

gram) biochemical contents, coefficient of variation

and ranges are presented in Table 1. The coefficients

of variation ranged from 10.1 to 56.5 %, signifying

broad phenotypic variation. ANOVA revealed highly

significant differences (p\ 0.001) among all the

traits, signifying existence of genetic variation that

can be exploited for breeding (Table 2).

Relationship between the genotypes

The degree of relatedness of the genotypes based on

themarkers and pedigrees are shown in the heat map in

Figs. 1 and 2. Values of the marker matrix are

composed of both negative and positive values. The

negative relationships are explained from the center-

ing of the marker covariates, leading to centering of

the entire marker-based matrix such that the sum of all

elements in the matrix is zero. Negative values in the

marker-based relationship matrix imply that the

detection of an allele in one genotype makes it less

likely to be detected in the other genotype, zero

indicate absence of dependence, while positive values

indicate an increased likelihood of an allele being

detected in the other genotype.

There were two clear population structures as

observed from the two heat maps (Figs. 1, 2). This

was also confirmed by the principal component

analysis (PCA) of the genotype data, with the first

two principal components explaining 30% and 11%,

respectively of the total marker variation, making a

total of 41% (Fig. 3). The first two principal compo-

nents were used because they explained the most

variation.

Table 1 Mean biochemical values (mg per gram), coefficient of variation (CV), and maximum and minimum values of the

biochemical traits (mg per gram) across the sites

Trait CV (%) Mean (mg per gram) Maximum (mg per gram) Minimum (mg per gram)

Caffeine 10.1 37.83 46.66 27.92

Catechin 56.5 6.15 12.89 2.93

EC 19.6 28.81 34.95 22.51

ECG 13.7 60.65 112.61 40.51

EGC 18.9 43.42 69.30 17.13

EGCG 14.7 87.29 120.82 59.89

Gallic acid 22.8 4.08 5.82 2.94

GC 18.4 37.87 63.28 22.36

GCG 18.1 19.97 33.01 13.65

Theanine 29.9 19.09 29.82 10.70

Theobromine 38.7 4.28 6.84 2.10

Theogallin 18.5 15.83 24.39 11.47
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Heritability

Broad sense heritability ranged from ECG (0.92) to

EGCG (0.35). Traits with high broad sense heritability

were ECG (0.92), EC (0.90), caffeine (0.82), EGC

(0.81) and GC (0.81) (Fig. 4). Traits with low broad

sense heritability were EGCG (0.35) and Theanine

(0.56 (Fig. 4). Genomic heritability ranged from 0.99

(Theogallin) to 0.52 (EC) (Fig. 4). Traits with high

genomic heritabilities were theogallin (0.99), ECG

(0.99), theobromine (0.95), EGC (0.92) and EGCG

(0.92) (Fig. 4). Traits with low genomic heritability

were EC (0.52) and theanine (0.59) (Fig. 4). All traits

except EC, GC and GCG had a higher genomic

heritability compared to broad sense heritability

(Fig. 4).

Prediction accuracies

RKHS-P had the lowest prediction for all the traits

except GA. For theobromine, the models with the

highest prediction accuracies were BRR (0.65)

(Fig. 5). BayesB (0.51) had the highest prediction

accuracy for caffeine, while RKHS-P (0.20) had the

lowest prediction accuracy for the same trait (Fig. 5).

RKHS-MP (0.68) had the highest prediction

17 66 10
2 64 67 76 49 11 53 28 10
3 38 69 43 92 30 74 55 13 8 10 6 33 56 1 45 80 87 85 89 46 47 81 25 98

17
66
102
64
67
76
49
11
53
28
103
38
69
43
92
30
74
55
13
8
10
6
33
56
1
45
80
87
85
89
46
47
81
25
98

−1 0 1
Value

Color Key

Fig. 1 Heat map of the marker-based relationship matrix of the 103 tea (C. sinensis) genotypes
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accuracies for theogallin, while RKHS-P (0.23) had

the lowest. BRR (0.56) and BayesA (0.56) had the

highest prediction accuracy for GA, while BayesB

(0.33) had the lowest. GBLUP (0.54) and BayesA

(0.53) had the highest prediction accuracies for EC,

while BRR, BayesB and BayesC had similar predic-

tion accuracies. For GCG, BRR (0.60) had the highest

prediction accuracies. RKHS-MP (0.71), BRR(0.67)

and BayesC (0.66) had the highest prediction accura-

cies for ECG. For EGC, GBLUP (0.64) recorded the

highest prediction accuracy, while BRR, BayesA and

BayesC had similar prediction accuracies for the same

trait. For EGCG, BayesB (0.61), BayesA (0.59),

BayesC (0.59) and GBLUP (0.59) recorded the highest

prediction accuracies. BRR (0.55) had the highest

prediction accuracy for catechin. GBLUP, BayesA,

BayesB, BayesC, RKHS-M and RKHS-MP had

similar prediction accuracies for catechin. For GC,

BayesB (0.49) had the highest prediction accuracy.

The model with the highest prediction accuracy for

theanine were RKHS-MP (0.44) (Fig. 5).

The mean prediction accuracies of the traits were

averaged for all the GS models and the traits with the

highest prediction accuracy were Theogallin (0.59),

ECG (O.56) and Theobromine (0.54) (Fig. 5). Traits

with the lowest mean prediction accuracies were
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Theanine (0.32) and caffeine (0.39). Similarly, the

mean GS accuracies for all the traits was calculated.

The performance of all the GS models were almost the

same, with BBR (0.53), BayesA (0.52), GBLUP (0.50)

and RKHS-MP (0.50) performing slightly better than

the other models. BayesB had the lowest prediction

accuracy in majority of the traits.

Effect of training population size on prediction

accuracy

Prediction accuracy increased as the TPS increased for

all the trait (Fig. 6). Comparing TPS30 with TP90,

prediction accuracies increased from 0.37 to 0.64 for

ECG (the most heritable trait), from 0.39 to 0.61 for

theobromine, and from 0.41 to 0.59 for EGC. For

EGCG, prediction accuracies increased from 0.43 to

0.54, while for EC, prediction accuracies increased

from 0.36 to 0.43. For caffeine, prediction accuracies

increased from 0.19 to 0.39, 0.35–0.49 for catechins,

0.28–0.58 for theogallin and 0.18–0.36 (Fig. 6). No

significant differences between the mean accuracy of

each training population size across traits were

observed for TP90 and TP80, whereas accuracy for

TP30 was significantly lower (p\ 0.05) compared to

all other training population sizes (Fig. 6).
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Discussion

Tea quality traits are difficult and expensive to

measure, hindering the improvement of these traits

using conventional breeding methods. GS is well

suited for traits that are expensive and difficult to

measure (Heffner et al. 2011), and therefore represents

a promising approach for enabling cost-effective

improvement of tea quality traits. In this study, we

evaluated the potential of GS implementation to

increase genetic gain in tea breeding programmes.

The impact of training population size and heritability

on the prediction accuracy of twelve quality traits

influencing tea quality were evaluated through cross-

validations using GBLUP. The population used in this

study consists of tea genotypes with diverse attributes.

Known high-quality clones and poor-quality clones

were included. The pedigree relationship matrices

showed a higher relationship among the genotypes
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than the marker-based matrices, because it does not

account for Mendelian sampling.

Effect of heritability and training population size

on genomic prediction accuracy

Generally, moderate to high prediction accuracies

were observed for all the traits, and this could be

attributed to the high heritability estimates observed.

Similar finding have been reported in different crops

by Ankamah-Yeboah et al. (2020), Mageto et al.

(2020), Zhang et al. (2017b) and Arojju et al. (2020).

The high prediction accuracies reported in our study

shows that GS can be used in tea breeding to improve

tea quality. The heritability of a trait significantly

affects the response to selection and improves the

efficiency of GS over phenotypic selection (Hayes

et al. 2009; Zhang et al. 2017a). High heritability leads

to increased gain from selection for the traits of

interest (de los Campos et al. 2015; Kruijer et al.

2015).

Overall, genomic heritability estimates were higher

than broad sense heritability for most traits, suggesting

that higher genetic gains can be achieved by using

molecular markers in tea breeding. The genomic

heritability is the proportion of phenotypic variance

explained by the regressing phenotypes on molecular

markers. Many polymorphic markers are required to

accurately estimate relatedness especially for distant

relatives. GBLUP relies on estimating the realized

kinship and is more accurate in estimating the

hereditary relationships among genotypes (de Roos

et al. 2009). Heritability of a trait could be improved

by increasing the number of replications, years of

recording phenotypic data and experimental sites

(Zhang et al. 2017a).

Several GS methods have been developed for

predicting complex traits and they include GBLUP,

Bayesian alphabets (BayesA, BayesB and BayesCp),

Ridge Regression (RR) BLUP, Random Forest and

Support Vector Machine and deep learning (Crossa

et al. 2017; Lorenz et al. 2011a). We compared six GS

models characterized by two different assumptions

with respect to the distribution of variance for marker

effects. In RRBLUP, marker effects are equally shrunk

and normally distributed with the same variance.

Bayesian models allow marker-specific variances, and

hence allow unequal shrinkage of marker effects.

Koech et al. (2020) studied genome-enabled

prediction models for black tea quality and drought

tolerance traits in discovery and validation popula-

tions. They only studied machine learning models, and

although they showed promising results, a limited

number of markers (1,421 DArTseq) were used. At the

time of writing of this paper, there was no reported

studies of genomic selection in tea using mixed

parametric or semi-parametric models.

Our results showed that the GBLUP model per-

formed similar to RKHS-M for all traits except ECG

and EC. RKHS is a semi-parametric method where the

genomic relationship matrix used in GBLUP is

replaced by a kernel matrix, which enables nonlinear

regression in a higher-dimensional feature space

(Gianola et al. 2006). Several studies have reported

that non-parametric models perform better than para-

metric models because they capture both additive and

non-additive effects (e.g., dominance, epistasis). They

can predict phenotypes better than the parametric

models, especially where non-additive effects are

important (Lebedev et al. 2020). For instance, in

eucalyptus, RKHS had slightly better predictive

abilities than four other models for traits with lower

heritabilities (i.e. trunk CBH, height, and volume), but

had the lowest prediction accuracies for pulp yield

(Tan et al. 2017). In our study, RKHS-M did not differ

in accuracy from the parametric methods. This agreed

with other studies (Chen et al. 2018b; Juliana et al.

2017) who reported similar results. Crossa et al.

(2013) compared GBLUP with the RKHS-M in maize

and they concluded that there was no clear superiority

of either of the models, although the RKHS-M

performed slightly better than the GBLUP.

We also observed that RKHS-P model had the

lowest prediction accuracies compared to the marker-

based models for all traits. Similar results were also

reported by Wolc et al. (2011) that marker-based

methods had higher accuracies than the pedigree-

based method. Likewise, Spindel et al. (2015) reported

that marker based GS models were more superior to

the pedigree-based prediction in rice for yield, height,

and flowering time. The use of G-matrix has several

benefits in genomic selection including (1) it can

differentiate sibs and can also avoid selecting closely

related sibs together, (2) it performs better when the

pedigree information is not accurate or missing and (3)

it can correct for pedigree errors (Juliana et al. 2017).

However, the pedigree model had reasonable predic-

tion accuracies for all traits, and this was because
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Unilever Tea Kenya maintains accurate pedigree

recording system and the families selected were small.

Although the RKHS-MP model performed well in

most of the traits, and had the highest accuracies in

ECG and theogallin, it did not perform significantly

better than BRR and GBLUP. Several other studies

(Crossa et al. 2013; Juliana et al. 2017), have reported

higher prediction accuracies by using both pedigrees

and markers in GS studies. While including markers

and pedigree could improve the accuracy of selecting

traits in tea breeding programmes, the benefits are not

huge.

In forest trees, results for most traits showed similar

prediction accuracies for RRBLUP and Bayesian

models (Grattapaglia et al. 2018). For instance, Chen

et al. (2018b) reported similar prediction accuracies in

four genomic prediction models (GBLUP), Bayesian

ridge regression (BRR), Bayesian LASSO(BL) and

reproducing kernel hilbert space (RKHS) in Norway

spruce (Picea abies (L.). Similarly, Isik et al. (2016)

observed similar predictive accuracies in maritime

pine (Pinus pinaster Aiton) for GBLUP, BRR and BL

prediction models. Tan et al. (2017) and Grattapaglia

et al. (2018) proposed rrBLUP and GBLUP as the best

models for use in forest tree breeding because they are

computationally easy to use.

Increasing the training population size increased

prediction accuracies across all measured traits but

tended to plateau between TPS90 and TP80. Increas-

ing number of genotypes at this point did not give any

additional prediction accuracy. Increasing TPS

increases accuracy by improving the estimation of

marker effects (Heffner et al. 2011). Lozada et al.

(2019) observed a positive correlation between TPS

and prediction accuracy for yield and agronomic traits

in soft red winter wheat. Similar results were also

reported by Zhang et al. (2017b) in maize and Olatoye

et al. (2020) in Miscanthus (grass). From our results

for cross-validations, an optimal number of genotypes

(* 80 % of the entire population) should be included

in the training panel to achieve improved predictions

in tea. Beyond this, increasing TPS might not be

longer advantageous for increasing accuracy.

Implementing GS in tea breeding

The main factors that could be considered before

implementing GS in a tea breeding programme

include prediction models, the size of the training

population, the relationship between the training and

the breeding populations, heritability, genetic archi-

tecture of the trait of interest in tea, marker density and

cost-effective genotyping platforms.

The training population used to construct GS model

should be closely related to the breeding population

and should be large as possible as this improves the

accuracy of estimating marker effects (Lorenz et al.

2011b). Zhang et al. (2017a) showed that prediction

accuracy increased for all the traits in maize with

increasing training population size. Since tea has a

high allelic diversity, the training population should

consist of genotypes with broad genetic diversity for

the traits of interest.

Trait heritability is a key factor that significantly

impacts on the accuracy of genomic selection (Heffner

et al. 2011). Our findings agreed with previous studies

that prediction accuracy increases with an increase in

trait heritability (Zhang et al. 2017a). However,

heritability could be improved by designing field

experiments for the training population to increase the

number of replications, testing sites and years of data

collection (Mackay et al. 1999).

The density and type of markers to be used in

constructing GS models influence the prediction

accuracy (Goddard and Hayes 2011). In this study,

SNP markers were used because they are abundant in

the plant genome and they give higher prediction

accuracies compared to other markers (Kwong et al.

2017). Cheaper options of SNP genotyping include

GBS, a simple highly-multiplexed next generation

sequencing platform that generates large numbers of

SNPs (Elshire et al. 2011). GBS is less expensive

compared to other platforms and can provide genome-

wide marker coverage for species that lack a reference

genome (Davey et al. 2011). However, SNP markers

obtained by GBS usually contain a large proportion of

missing data across samples because fragments of the

genome are sequenced at low depth, and hence some

loci could have zero coverage (Elshire et al. 2011). In

GS, using a large number of markers and selecting a

suitable imputation algorithm enables the use of low-

density SNP markers without a major loss in predic-

tion accuracy (Habier et al. 2009; Mulder et al. 2012).

The most common imputation algorithms that could

be used include; mean, singular value decomposition

(SVD), traditional k nearest neighbor (kNN), expec-

tation maximization (EM) and random forest regres-

sion imputation algorithms (Marchini and Howie
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2010; Rutkoski et al. 2013). GS requires genome wide

markers that explain most genetic variation (Meuwis-

sen et al. 2001). Therefore an increase in the length of

LD or in marker number steadily improves the

prediction accuracy (Asoro et al. 2011).

The type of model used for GS could impact on the

prediction accuracy and mainly depend on the com-

plexity of the trait (Crossa et al. 2017). The main GS

models developed differ on assumptions of the trait

architecture and they include RRBLUP, GBLUP,

Reproducing Kernel Hilbert Spaces(RKHS), Bayesian

models (BayesA, BayesB, BayesC, BayesLASSO)

and machine learning (Lorenz et al. 2011a;Wang et al.

2018). A suitable model could be tested and selected

based on the complexity of the trait.

Applying GS in tea improvement

Several limitations could affect the genetic gain of a

GS programme in tea. A proper implementation of GS

in tea breeding requires the optimization of field trial

management and agricultural practices, and accurate

phenotyping and genotyping of the training popula-

tion. Generally, our results suggest that GS has a great

potential in predicting superior tea quality genotypes.

The main challenge facing all tea breeding pro-

grammes is the long generation interval, as it takes

between 3 and 6 years for tea to grow from seedling to

flowering (Mondal 2014). This means that developing

an improved tea variety using conventional methods

requires many years of field selection (Corley and

Tuwei 2018). GS in tea breeding could be beneficial

by reducing the selection cycle time as shown in

Fig. 7. This could be done by first applying GS early at

the nursery stage. The genotypes with high GEBVs

could be selected, tested in the field and the promising

ones released for commercial planting. Compared to

conventional field selection method, GS can improve

genetic gain per unit time significantly.

Conclusions

The evaluation of complex traits in tea such as quality

using phenotypic selection is a difficult and expensive

process using the standard conventional breeding

process. Our results showed that the differences in

prediction accuracies between the methods evaluated

were small. Generally, BRR, BayesA, GBLUP and

RKHS-MS models slightly outperformed the other

methods. However, BRR and GBLUP could be

preferred because they are computationally simple to

use. Prediction accuracies increased with the increase

in heritability and training population size. The high

GS accuracies for nearly all the traits from our results

clearly demonstrates the potential of GS using genome

wide SNPmarkers to predict high quality varieties in a

tea breeding programme.While the main benefit of GS

in tea breeding is expected to be the reduction of the

breeding cycle length by several years, the use of a

realized genomic relationship matrix also enables the

precise evaluation of genetic relationships and heri-

tabilities. The next step would be to simulate a cost-

benefit analysis to study the implications of manipu-

lating the number of markers for cost-effective GS.
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