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Abstract

Bambara groundnut [Vigna subterranea (L.) Verdc.] is an underutilised, protein-
rich and self-pollinating legume that can withstand high temperature and drought
stress and is mainly grown in semi-arid Africa. In order to dissect the complexity
of drought resistance and to use genomic tools for yield enhancement of bambara
groundnut in response to drought stress, yield-related and morphological traits
under drought-stressed (DS) and well-watered (WW) conditions were evaluated
in the F; and F, segregating generations derived from a cross between two geno-
types selected from landraces S19-3 (originally from Namibia) and DodR (origi-
nally from Tanzania). Significant quantitative trait loci (QTLs) for shoot dry weight
(SDW) were mapped on LG10 accounting for 15.5% of the phenotypic variation
explanation (PVE) under well-watered conditions and a putative quantitative
trait locus (QTL) for the same trait mapped on LG10 with reduced PVE (10.10%)
under drought-stressed conditions in the F; segregating population. Significant
QTLs associated with the number of seeds per plant (NS), number of double-seeded
pods per plant (NDP), seed weight per plant (SW) and pod weight per plant (PW)
were mapped on LG4 (nearest marker: 4181663 and 4175954) with overlapping
confidence intervals and explained 21.9%, 21.8%, 23.5% and 19.9% of the PVE,
respectively, under well-watered conditions in the F, population, which could be
considered as the major QTL involved in the control of these traits. Seven consen-
sus QTLs for yield-related and morphological traits were mapped on LG2, LG3,
LG4, LG7A and LG10. The study provides fundamental knowledge of QTLs as-
sociated with yield-related and morphological traits under drought-stressed and
well-watered conditions in bambara groundnut, which is also essential for yield
improvement of bambara groundnut in response to drought stress.
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1 | INTRODUCTION

Bambara groundnut is an underutilised and drought-
resistant leguminous crop with a relatively high protein
content (16%—25%). The crop is mainly grown by subsis-
tence farmers and serves as a good source of edible pro-
tein in Africa (Atoyebi et al., 2017; Halimi et al., 2020;
Massawe et al., 2016). Genetic maps with reliable molec-
ular markers are useful tools to identify quantitative trait
loci (QTLs) and potential candidate genes that regulate
complex traits, accelerating the marker-assisted breed-
ing process and potentially shortening the breeding cycle
(Conson et al., 2018). Understanding the genetic basis
of bambara groundnut and the identification of molecu-
lar markers for traits of interest are prerequisites for de-
velopment of superior genotypes in molecular breeding
programmes (Kullan et al., 2012). However, to date only
a limited number of studies have reported mapping quan-
titative and qualitative loci to a location on the chromo-
somes of bambara groundnut (Ahmad et al., 2016; Chai
et al., 2017; Ho et al., 2017).

The first genetic map reported in bambara groundnut
consisted of 20 genetic linkage groups, which were iden-
tified using amplified fragment length polymorphism
(AFLP) and simple sequence repeat (SSR) markers in the
F, segregating population derived from a ‘wide’ cross be-
tween domesticated type (DipC) and wild type (VSSP11),
and covered 516 cM (centimorgan) of bambara groundnut
genome (Basu et al., 2007). The first intraspecific genetic
linkage map consisting of 21 linkage groups and covering
608.3 cM of genetic distance was constructed using 209
diversity arrays technology (DArT) dominant and 29 co-
dominant SSR markers in an F; segregating population
derived from two domesticated landraces, Tiga Nicuru X
DipC, in bambara groundnut (Ahmad et al., 2016). Two
consensus QTLs were mapped for internode length and
growth habit under controlled environment and field con-
ditions (Ahmad et al., 2016).

The first expression marker-based genetic map using
gene expression markers (GEMs), which were developed
after cross-hybridisation of bambara groundnut to the
Affymetrix Soybean Genome Gene Chip using 65 F; seg-
regating population derived from Tiga Nicuru X DipC,
was reported to consist of 13 linkage groups containing
218 GEMs and covered 982.7 cM of bambara groundnut
genome (Chai et al., 2017). Chai et al. (2017) identified
co-localised QTLs mapped on LG11 in the GEM map for

agronomic traits including yield-related traits (i.e. pod
number per plant, seed number per plant, pod weight
per plant, seed weight per plant and harvest index) and
morphological traits (i.e. internode length and peduncle
length), under well-watered conditions in the F5 segregat-
ing population of bambara groundnut, which may suggest
that these traits are controlled by the same underlying
pleiotropic gene. QTLs associated with pod number per
plant (PW) and harvest index (HI) in the GEM map in
bambara groundnut have also been reported to be affected
by drought stress (Chai et al., 2017). This GEM map pre-
sented the possibility of translating information and re-
sources from major and/or model plants to underutilised
crops.

In addition, Ho et al. (2017) demonstrated using bam-
bara groundnut maps to link to well-characterised closely
related sequenced legumes, which included common
bean (Phaseolus vulgaris L.), adzuki bean (Vigna angu-
laris), mung bean (Vigna radiata) and soybean (Glycine
max). Furthermore, the conserved syntenic locations of
QTLs in the related species could be used to identify can-
didate genes underlying target traits in bambara ground-
nut (Ho et al., 2017). A combination of population-specific
and pre-selected common informative markers was used
to construct two individual intraspecific genetic maps
in bambara groundnut from the two crosses: the genetic
map of IITA686 X Ankpa4, which was derived from
263 F, segregating population, gave spaced markers on
11 linkage groups comprising of 223 DArTseq-based SNP
markers and covered 1395.2 cM while a genetic map of
Tiga Nicuru X DipC, derived from 71 F; segregating pop-
ulation, gave spaced markers across 11 linkage groups
consisting of 293 DArTseq-based SNP markers and cov-
ered 1376.7 cM in bambara groundnut (Ho et al., 2017).
A significant quantitative trait locus (QTL) for internode
length mapped on LG2 (50.6 cM; flanking markers be-
tween 47.6 and 54.4 cM) with 33.4% of the PVE was ob-
served in this cross and showed conserved syntenic blocks
at Pv03 (38.4-39.1 Mbp; common bean), Vall (12.5-
17.4 Mbp; adzuki bean) and Vr07 (39.4-43.5 Mbp; mung
bean) (Ho et al., 2017). Genetic maps are essential tools
for analysing genetic architecture of important traits and
for identifying QTLs responsible for phenotypic variation
in bambara groundnut (Chai et al., 2017). The first whole
genome sequence of bambara groundnut, which was pub-
lished by the African Orphan Crops Consortium (AOCC)
(https://bioinformatics.psb.ugent.be/orcae/aocc/overv
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iew/Vigsu), provided a better understanding of candidate
genes involved in agronomic trait regulation (Chang et al.,
2019). Moreover, this will accelerate the identification of
candidate genes underlying QTL through application of
molecular marker-assisted selection (MAS) in bambara
groundnut breeding programmes.

One of the adverse effects of climate change is the
expectation of more regular droughts in many parts of
the world, leading to reduced yield and more frequent
crop failure. This calls for targeted crop improvement to
develop drought-resistant crops, especially capitalising
on advances in omics technologies. Various researchers
have used genetic mapping approaches to begin to dis-
sect drought resistance traits and utilised MAS to incor-
porate drought resistance traits in breeding programmes.
For example, Varshney et al. (2014) identified nine QTL
clusters from two recombinant inbred line (RIL) map-
ping populations—ICCRILO03 (ICC 4958 x ICC 1882) and
ICCRIL04 (ICC 283 x ICC 8261) under drought condi-
tions in chickpea (Cicer arietinum L.). QTL Cluster 5 on
CaLGO04 showed high potential to enhance drought toler-
ance in chickpea and could be introgressed in elite variet-
ies, as this region contained stable and consistent QTLs,
explaining up to 58.20% of the phenotypic variation for
morphological and yield-related traits (Varshney et al.,
2014). Dramadri et al. (2019) also identified 18 significant
QTLs under drought stress and non-stress conditions in
a RIL mapping population of common bean. Significant
QTLs for seed yield per plant co-located with pod weight
per plant on Pv01 and on Pv02 under drought stress con-
ditions (Dramadri et al., 2019). In the present study, we
mapped QTLs for yield-related and morphological traits
under drought-stressed (DS) and well-watered (WW) con-
ditions in the F; and F, segregating populations of a bam-
bara groundnut cross. This study provided critical insights
into how genetic features control these traits in bambara
groundnut under drought-stressed and well-watered
conditions.

2 | MATERIALS AND METHODS
2.1 | Mapping population and DNA
isolation

A total of 86 lines of the F, segregating population de-
rived from a controlled cross between a drought tolerant
genotype (S19-3, collected from Namibia) and presumed
drought susceptible genotype (DodR, collected from
Tanzania), and two parental lines (S19-3 and DodR) were
used in the present study. Genomic DNA was extracted
from freeze-dried leaf samples using the DNeasy Plant
Mini Kit (Qiagen GmbH, Hilden, Germany) following
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manufacturer's instructions. The quantity and quality
of DNA was estimated visually on a 1% agarose gel with
ethidium bromide staining and restriction enzyme di-
gestion using a restriction enzyme, HindIII (NEB, USA).
DNA concentration was then adjusted to 50 ng/pl and
sent to Diversity Arrays Technology Pty Ltd (Canberra,
Australia) for DArTseq genotyping prior to development
of genetic map.

2.2 | Plant material and
experimental design

A total of 114 lines of the F; segregating population derived
from S19-3 X DodR were evaluated in a rainout shelter
at the University of Nottingham Malaysia (2°56'46.74"N;
101°52'24.35"E) with mean air temperature of 29°C/24°C
day/night and relative humidity of 75%/95% day/night
from November 2018 to February 2019. This was followed
by a subsequent F, segregating population in the rainout
shelter with mean air temperature of 36°C/25°C day/night
and relative humidity of 58%/91% day/night from April to
July 2019, respectively.

Both experiments were carried out in a completely
randomised design (CRD) with three replicates and two
treatments, drought-stressed and well-watered treat-
ments. Each of the replicates was represented by one plant
from each of the individual lines. Irrigation for the well-
watered treatment was continued throughout the experi-
ment while the drought-stressed treatment was imposed
after 100% flowering was observed at 47 days after sowing
(DAS) and no further irrigation was applied until early
pod-filling stage at 74 DAS, at which irrigation of plants
for the drought-stressed treatment was resumed. A trickle
tape irrigation system was set to irrigate the plants at 07:00
and 19:00 h for 10 min with a flow rate of 2 L/h, with each
tube 6 m in length. A distance of 40 cm X30 cm was kept
between the plants. NPK (nitrogen, phosphorus and po-
tassium) fertiliser was applied at a rate of 20:40:60 kg/ha
(133 kg/ha NPK (15:15:15), 44 kg/ha TSP (triple super-
phosphate) and 67 kg/ha MOP (muriate of potash) at sow-
ing and after emergence. All other agronomic procedures,
such as weeding and spraying of pesticides, were carried
out when necessary.

2.3 | Trait measurements

Yield-related traits, that is, shoot dry weight (SDW), num-
ber of pods per plant (NP), number of seeds per plant
(NS), number of double-seeded pods per plant (NDP),
pod weight per plant (PW), seed weight per plant (SW),
100-seed weight (100SW), harvest index (HI) and shelling
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percentage (SP), as well as morphological traits, that is,
days to flowering (DTF), plant height (PH), petiole length
(PL), internode length (IL), number of leaves per plant
(NL) and petiole internode ratio (P/I), were evaluated
based on the bambara groundnut descriptor list (IPGRI,
2000) with minor modification (Table 1).

2.4 | Soil moisture content

Two evenly spaced PR2 profile tubes (Delta-T Devices Ltd.,
Cambridge, UK) were inserted into the centre of each plot
with a distance of 3 metres between two profile tubes in
each plot. There were 12 access tubes in total. Three PR2
readings %Vol (volumetric water content as a percentage)
were taken twice a week between 09:00 and 11:00 h at soil
depth of 100, 200, 300, 400, 600 and 1000 mm from seeds
sowing until maturity in 2018 and 2019 planting seasons.

2.5 | Genetic linkage map construction

The presence or absence (0/1) scoring of two alleles in the
co-dominant DArTseq-based SNP markers for each indi-
vidual line in the F, segregating population was converted
into genotype codes (a, b, h), by comparison with parental
lines. The markers were scored as 1:1 and/or 0:0 in pa-
rental lines. Markers, which did not fit expected segrega-
tion patterns when compared to the parental lines, were
filtered out. Table S1 presented the linkage map group,

position, trimmed sequence and SNP of DArTseq-based
SNP markers.

A chi-square goodness-of-fit test in JoinMap v4.1
(Ooijen & Kyazma, 2009) was used to evaluate any dis-
crepancy from the expected segregation ratios (1:2:1 for
the F, segregating population) at a significance level of p
< 0.05. A total of 843 polymorphic DArTseq-based SNP
markers were pre-selected from 6396 markers and a total
of 48 from 843 DArTseq-based SNP markers showing dis-
torted segregation (p < 0.05) from expected Mendelian
ratios were excluded. A total of 795 DArTseq-based SNP
markers were selected and 86 F, individual lines were used
to construct the genetic linkage map using JoinMap v4.1
(Ooijen & Kyazma, 2009). Markers were sorted to linkage
groups with the Create Groups Using the Grouping Tree
function of JoinMap 4 (Van Ooijen, 2006). The grouping
of markers was performed between LOD (logarithm of the
odds) 2.0 and 10.0 with a step of 0.5 and the Independence
LOD option was adopted. The Haldane mapping func-
tion with default calculation settings (recombination
frequency <0.4 and LOD >1.0, ripple value = 1, jump in
goodness-of-fit threshold = 5) was selected to calculate ge-
netic distances based on recombination frequencies. The
markers that showed double cross-over events between
two neighbouring markers within a map distance of 1 to
3 cM were manually removed. The nearest neighbour fit,
the nearest neighbour stress (Fit & Stress) and plausible
positions produced by the maximum likelihood mapping
(MLM) algorithm were used as indicators to confirm
whether a locus fitted well between its neighbouring loci.

TABLE 1 Evaluation of traits in the F; and F, segregating populations derived from S19-3 X DodR

Trait Measurement
Traits abbreviation Evaluation method time
Shoot dry weight (g) SDW Above-ground plant parts after drying in oven at 70°C Harvest stage
for 3-5 days
Number of pods per plant NP Pod number per plant Harvest stage
Number of seeds per plant NS Seed number per plant Harvest stage
Pod weight per plant (g) PW Pod weight per plant after drying at 37°C for 14 days Harvest stage
Seed weight per plant (g) SW Seed weight per plant after drying at 37°C for 14 days Harvest stage
and deshelled
Petiole internode ratio P/I Petiole length/internode length Harvest stage
100-seed weight (g) 100SW Seed weight/number of seeds per plant * 100 Harvest stage
Harvest index HI Seed weight/(pod weight + shoot dry weight) Harvest stage
Shelling percentage (%) SP Seed weight/pod weight * 100 Harvest stage
Days to flowering DTF From sowing date to the first open flower Flowering stage
Plant height (cm) PH From the ground level to the tip of the highest point, Harvest stage
including the terminal leaflet
Petiole length (cm) PL The average length of three petioles Harvest stage
Internode length (cm) IL The average length of three internodes Harvest stage
Number of leaves per plant NL One leaf including three leaflets Harvest stage
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The optimal positions of each marker in the final genetic
map were used for QTL analysis.

2.6 | QTL analysis

Genetic linkage map and phenotypic data from drought-
stressed and well-watered conditions in the F; and F, seg-
regating populations were subjected to QTL analysis using
MapQTL 6.0 software (Ooijen & Kyazma, 2009). The sig-
nificant threshold of the Genome-Wide (GM) LOD thresh-
old was obtained from the permutation test using 10,000
repetitions at p < 0.05 (5%). Interval mapping (IM) was
carried out following the permutation test and the LOD
values from IM were compared with the GW LOD thresh-
old at p < 0.05 from the permutation test. Significant QTLs
were detected if the LOD score was equivalent to or higher
than the GM LOD threshold. Putative QTLs were detected
if the LOD score was lower than the GM LOD threshold
by up to a 1-LOD interval.

The non-parametric Kruskal-Wallis (KW) test was
performed to determine the significant level of all marker
loci associated with the non-normally distributed quanti-
tative traits in the F; and F, segregating populations. KW
tests ranked all individuals according to their quantitative
trait value and tested them for an association with their
marker allele genotype (Van Ooijen & Maliepaard, 1996).
MapChart 2.3.2 (Voorrips, 2002) was used to depict the
linkage groups and QTLs.

2.7 | Data collection and analysis
Normality of trait data was examined using the Shapiro-
Wilk normality test and data transformation was per-
formed for non-normally distributed trait data. Two-way
analysis of variance (ANOVA) was carried out with 95%
confidence intervals (CIs) of the mean (CI = population
mean =+ 1.96xstandard deviation/\/sample size), while
Pearson's correlation coefficient analysis was conducted
to analyse the relationship between yield-related and mor-
phological traits in the F; and F, segregating populations
using the Genstat Statistical package (18th edition, VSN
International, UK).

3 | RESULTS

3.1 | Soil moisture content

There was no significant difference for soil moisture con-
tent changes at each of soil depth within the treatments
between two planting seasons, 2018 and 2019 (p > 0.01).
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The average of total reduction of soil moisture content in
both 2018 and 2019 under drought-stressed treatment was
42.7% from 47 DAS to 74 DAS. On average in 2018 and
2019, soil moisture content declined by 0.44% per day at
depth 200 mm and 0.36% per day at depth 300 mm over
28 days of drought (Figure 1). Significant reduction (p <
0.01) in soil moisture by 7.9%, 12.4% and 10.0% was ob-
served under drought-stressed compared to well-watered
conditions at depth 100 mm, 200 mm and 300 mm, respec-
tively. However, there was no significant difference (p >
0.01) for soil moisture content at depth 400 mm, 600 mm
and 1000 mm between drought-stressed and well-watered
treatment.

3.2 | Variation of yield-
related and morphological traits in the
F; and F, segregating populations

Parental lines showed significant differences for 100SW
and PH between drought-stressed and well-watered con-
ditions (p < 0.05) in both 2018 (p < 0.05) and 2019 (p <
0.05) planting seasons. DodR had significantly higher
(p < 0.05) 100SW and PH in the 2018 planting season,
and significantly higher (p < 0.05) NL, PL and PH in the
2019 planting season compared to S19-3 under drought-
stressed condition.

In the F; segregating population, the average results
showed a significant reduction (p < 0.05) of 14.8% in NS,
10.5% in SW, 16.1% in PW, 5.4% in HI and 9.8% in PH under
drought-stressed conditions compared to well-watered
conditions (Table 2). All yield-related and morphological
traits showed significant differences among individual
lines (p < 0.05), except NDP, 100SW, SP and PH. The in-
teraction between individual lines and treatment was sig-
nificant (p < 0.05) for NDP, SW, PW, SP, DTF, NL and PL.

In the F, segregating population, the average results
showed a significant reduction (p < 0.05) of 41.5% in SDW,
41.2% in NS, 45.8% in NP, 47.9% in SW, 47.6% in PW, 12.5%
in HI, 40.5% in NL and 4.9% in PL under drought-stressed
conditions compared to well-watered conditions (Table 3).
All yield-related and morphological traits showed signifi-
cant differences (p < 0.05) among individual lines, except
for NDP. The interaction between treatments and F, indi-
vidual lines was significant (p < 0.05) for all traits, except
NP, 100SW and DTF.

Positive correlations between yield-related traits, that
is, SDW, NS, NP, SW and PW, and morphological traits,
that is, NL, PL, IL and PH were observed under drought-
stressed and well-watered conditions (Tables S2 and S3).
Yield-related traits, that is, NS, NP, SW and PW showed
strong positive linear relationships under both water re-
gimes, while the overall correlations under well-watered
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FIGURE 1 Soil moisture content measurements at depth

100 mm, 200 mm and 300 mm based on PR2 reading (% vol) under
drought-stressed (DS) and well-watered (WW) conditions. Data
represent mean values of average soil moisture content during
plant growth season in 2018 and 2019; n = 12. Data represent mean
values + standard error

conditions (F5: ryw = 0.88-0.91, p < 0.01; F,: ryw = 0.90-
0.97, p < 0.01) were higher than those under drought-
stressed conditions (F5: rpg = 0.73-0.86, p < 0.01; F,: rpg
= 0.73-0.82, p < 0.01) (Tables S2 and S3). HI positively
correlated with NS (r = 0.57, p < 0.01), SW (r = 0.82,
p < 0.01) and PW (r = 0.80, p < 0.01), and negatively
correlated with NDP (r = -0.64, p < 0.01) under drought-
stressed conditions in the F, generation (Table S3). A
moderate positive correlation was observed among mor-
phological traits, that is, NL, PL, IL and PH under both
water regimes in the F; generation (rpg = 0.32-0.47, p
<.01; ryw = 0.40-0.60, p < 0.01) and PL, IL and PH under
both water regimes in the F, generation (rpg = 0.63-0.78,
p < 0.05 and/or p < 0.01; ryyw = 0.70-0.74, p < 0.01)
(Tables S2 and S3).

3.3 | Linkage map and marker
distribution

At LOD >3.5 of grouping independence in the regres-
sion mapping (RM) approach, 795 of 843 polymorphic
markers were assigned into 11 linkage groups. The
final genetic linkage map was constructed by using 234
DArTseq-based SNP markers after pre-selection and
thinning of markers, covering 1040.92 cM of the genome
with an average marker density of 5.23 cM (Table S4).
Among the linkage groups, LG3 with 27 DArTseq-based
SNP markers was the longest group covering 171.67 cM
followed by LG2 with a length of 152.07 cM and LG5
with a length of 119.70 cM (Table S4). LG1B with four
DArTseq-based SNP markers was the shortest group cov-
ering 4.90 cM, followed by LG6B with alength of 8.10 cM.
LG7A has the longest average distance of 8.38 cM and

the second-longest distance of 35.45 cM between two ad-
jacent markers (Table S4).

3.4 | Detection of QTLs associated with
yield-related and morphological traits
under drought-stressed and well-watered
conditions in the F; and F, segregating
populations

Significant and putative QTLs for yield-related and
morphological traits were detected under both water
regimes in the F; and F, segregating populations
(Figure 2). Most QTLs were distributed in LG2, LG3,
LG4, LG7A and LG10. Significant QTL for NS, NP
and putative QTL for PW under well-watered condi-
tions and putative QTL for IL under drought-stressed
conditions in the F; segregating population were co-
located on LG2 (85.95 cM, nearest marker: 4181165 and
27636104) with overlapping confidence intervals (Table
4). Significant QTLs for NS, NDP, SW, PW and puta-
tive QTL for NP and HI under well-watered conditions
in the F, segregating population were co-located on
LG4 (3.29 cM, nearest marker: 4181663 and 4175954)
with overlapping confidence intervals (Table 4). In ad-
dition to the co-located QTL on LG4, significant QTL
for NDP and PW under well-watered conditions in the
F, segregating population were also mapped on LG6A
and LG5, respectively (Table 4). Significant QTL for NP
under drought-stressed conditions in the F, segregat-
ing population was observed to have mapped on LG11
(38.03 cM, nearest marker: 2764162 and 4182072), ex-
plaining 16.0% of the phenotypic variation (Table 4).
However, putative QTL for NP was detected on LG4
(3.29 cM, nearest marker: 4181663) under well-watered
conditions in the F, generation, explaining 12.8% of
the phenotypic variation. Seven QTLs were found to
have overlapping confidence intervals for yield-related
and morphological traits, which included 4181165 and
27636104 (85.95 cM) on LG2 (NS, NP and PW under
well-watered conditions and IL under drought-stressed
conditions in the F,; generation), 4182352 (100.03 cM)
on LG2 (P/I under drought-stressed conditions in the
F; and F, generations), 4183509 (87.10 cM) on LG3
(SDW and PH under drought-stressed conditions in
the F, generation), 4175954 and 4181663 (3.29 cM) on
LG4 (NS, NP, NDP, SW, PW and HI under well-watered
conditions in the F, generation), 4175814 (35.38 cM)
on LG7A (NS, SW and PW under drought-stressed
conditions in the F; generation), 4178651 (32.66 cM)
on LG10 (SDW and NL under drought-stressed condi-
tions in the F; generation) and 4181438-1 (43.76 cM)
on LG10 (SDW under well-watered conditions and PH
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FIGURE 2 Map position of the quantitative trait loci (QTL) under drought-stressed (DS) and well-watered (WW) conditions in the F;
and F, segregating population developed from S19-3 X DodR. Rectangular bars represent the 1- and 2-LOD QTL interval (inner and outer
interval). Solid rectangular bars represent significant QTLs, while blank bars represent putative QTLs. LG1, LG6 and LG7 were divided into
subgroups ‘1A’ and ‘1B’, respectively, based on the association observed in the maximum likelihood mapping (MLM) due to insufficient
linkage to complete the map using regression mapping (RM). SDW, shoot dry weight; NP, number of pods per plant; NS, number of seeds
per plant; PW, pod weight per plant; SW, seed weight per plant; 100SW, 100-seed weight; HI, harvest index; SP, shelling percentage; DTF,
days to flowering; PH, plant height; PL, petiole length; IL, internode length; NL, number of leaves per plant; PI, petiole internode ratio

under drought-stressed conditions in the F; genera-
tion) (Table 4).

4 | DISCUSSION

Several molecular and genetic studies (Chai et al., 2017;
Redjeki et al., 2013) as well as physiological studies
(Basu et al., 2007; Chai et al., 2016; Jorgensen et al., 2010;
Muhammad et al., 2016; Vurayai et al., 2011) have been
focused on understanding the complexity of drought re-
sistance in bambara groundnut. However, the inheritance
and genetic architecture of quantitative traits for drought
resistance in bambara groundnut are still not well un-
derstood. For the first time, we identified and compared
the QTLs under drought-stressed and well-watered con-
ditions in the F; and F, segregating populations derived
from S19-3 x DodR. The present study has also furthered
our understanding of the variation of traits in segregating
populations of bambara groundnut and the correlation
between yield-related and morphological traits, and the
impact of drought stress on these traits.

In the present study, significant QTLs were mapped to
approximately the same position on LG4 (3.29 cM) for NS,
NDP, SW and PW with PVE ranged from 19.9 to 23.5% and
putative QTLs for NP and HI were mapped to the same
location on LG4 (3.29 cM) with PVE ranged from 11.3% to
12.8% under well-watered conditions in the F, segregating
population. Such pleiotropism has also been observed in
other species, such as soybean, in which QTLs associated
with DTF, days to maturity, PH, number of nodes on main
stem, lodging and plot yield mapped to the same chro-
mosomal regions (Zhang et al., 2004). Chai et al. (2017)
reported that QTLs controlling NP, NS, IL and peduncle
length were centred around the same marker in an F5 seg-
regating population of bambara groundnut, Tiga Nicuru X
DipC. QTLs for NS, NP and PW under well-watered condi-
tions and QTL associated with IL under drought-stressed
conditions in the F; segregating population were co-
located on LG2 (85.95 cM) with overlapping confidence
intervals. The clustered QTL on the same loci could corre-
spond to a single gene controlling yield and growth habit
in bambara groundnut (Chai et al., 2017).

Multiple significant QTLs for NDP under well-watered
conditions in the F, segregating population were mapped

on LG4 (3.29 cM) and LG6A (43.37 cM), explained 21.80%
(LOD 3.85) and 16.10% (LOD 2.75) of the phenotypic vari-
ation, respectively, suggesting the inheritance of double-
seeded pods was controlled by a major QTL and few minor
QTLs. Similar results were also observed for PW under
well-watered conditions in the F, segregating population
mapped on LG4 (3.29 cM) and LG5 (30.51 cM), explained
19.9% (LOD 3.5) and 17.6% (LOD 3.03) of the phenotypic
variation, respectively, suggesting the inheritance of pod
yield could probably be controlled by few QTLs with
minor effect. QTLs identified under well-watered condi-
tions could reflect the intrinsic genetic mechanisms un-
derlying yield-related and morphological traits which vary
between the parental lines, although there are also clear
differences observed among individual lines and the in-
teraction between genotypes and environment factors for
these traits clearly exists, as shown by the difference in
QTL between treatments.

Takuno et al. (2012) reported that F, and F; popula-
tions would be almost as useful as RIL populations for
QTL mapping. Bradshaw et al. (1998) estimated the accu-
racy of QTL detection in two different population sizes in
interspecific crosses of monkeyflower (Mimulus spp.), 12
QTLs of relatively large effect were detected in the smaller
population (n = 93), while 27 QTLs including 11 of the
same QTLs were detected in the larger population (n =
465). Although the number of the plants sampled (n = 3)
and the population size (n = 86) are potential limiting fac-
tors that could have affected the power of QTL detection,
the estimated QTLs with PVE of >20% could be consid-
ered as major QTLs that control these traits, including NS,
NDP and SW.

As the indicators of drought tolerance, PH and SW
were located in the same genomic regions on the same
chromosomes in soybean (Ren et al., 2020). Ghaffari
et al. (2012) reported that PH positively correlated with
seed yield in both normal and drought stress conditions
and PH is an important determinant of seed yield in
sunflower (Helianthus annuus L.). In the present study,
PH and SW showed a positive correlation under both
water regimes in the F; and F, segregating generations
(F5: rpg = 0.43, p < 0.01, ryw = 0.38, p < 0.01; Fy: rpg =
0.49, p = 0.08, ryw = 0.33, p = 0.27) (Tables S2 and S3).
The significant and positive correlation between PH and
SDW were also observed under both water regimes in
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TABLE 4 (Continued)

Significant

levels

KW

value

Dominance

effect

Additive
effect

Position
(cM)

Linkage
group
10

M

GW

LOD

PVE%

Nearest marker

LOD

Treatment Generation

Traits

KKk

9.67
10.76

5E-05

-1.53
-1.25
-0.93
-0.94
-0.22
-0.22
-0.22
0.58

0.95

0.92

0.4

1

4181438-1
4183509
4181745
4181117

37.09
87.10

1.99
241
2.26
1.85
2.18
2.11
2.38
1.81
2.17
1.94

2.8

DS B3

DS

PH (cm)

sksksksk

—5E—-05

12.9

2.9
2.7
2.8
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—5E—05 o
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sksksksk
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4181329, 24385209

27636104
4178576
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2.7
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4182352
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53

2.
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2.9
2.8
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P/1

skek

9.50
8.66

—5E—-06
5E—06

100.03

F3

DS

Fk

10.7

100.03

F4

DS
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Note: Yield-related traits: SDW, shoot dry weight; NS, number of seeds per plant; NP, number of pods per plant; NDP, number of double-seeded pods per plant; SW, seed weight per plant; PW, pod weight per plant;

100SW, 100-seed weight; HI, harvest index; SP, shelling percentage; morphological traits: DTF, days to flowering; NL, number of leaves per plant; PH, plant height; PL, petiole length; IL, internode length; P/I, petiole
internode ratio; DS, Drought-stressed; WW, Well-watered; GW LOD, Genome-Wide logarithm of odds; IM LOD, Interval mapping logarithm of odds, PVE, phenotypic variation explanation; KW, Non-parametric

Kruskal-Wallis test, Significant level *p < 0.1, **p < 0.05, **p < 0.01, ¥***p < 0.005, *****p < 0.001, ******p < 0.0005, ******p < 0.0001, ns not significant.

the F; and F, generations (F5: rpg = 0.51, p < 0.01, ryw
= 0.54, p < 0.01; F,: rpg = 0.70, p < 0.01, rywyw = 0.63,
p < 0.05) (Tables S2 and S3), and these two traits were
located in the same genomic regions (87.10 cM, nearest
marker: 4183509) with 12.90% of the PVE on LG3 under
drought-stressed conditions in the F, generation. Traits
including PH, SDW, SW, NS, NP, PW, 100SW, IL and P/I
are useful for selection of individuals in response to
drought stress (Varshney et al., 2014). The significant
differences observed among individual lines (p < 0.05)
and the interaction between treatment and individual
lines for yield-related and physiological traits would
suggest that individual lines in the segregating popula-
tions could be selected for superior performance under
multiple environmental conditions (Zhao et al., 2016).
The genetic linkage map obtained in the present study
could be used for the identification of molecular markers
linked to important agronomic traits and syntenic regions
in other closely related species such as cowpea. Integrating
genetic linkage maps from different crosses or using a
larger mapping population size will facilitate the devel-
opment of fine and high marker density maps. Together
with a fully assembled and annotated genome of bam-
bara groundnut, the task of identifying markers associ-
ated with target traits and the function of candidate genes
associated with specific traits will become a reality. The
identified markers associated with target traits will be use-
ful in breeding selection to accelerate bambara groundnut
improvement through MAS breeding. The development of
DArT sequencing technology and the emergence of pow-
erful genome editing techniques will further contribute to
molecular breeding progress in bambara groundnut.

5 | CONCLUSION

The present genetic linkage map covered 1,040.92 cM
across 11 linkage groups with an average interval distance
of 5.23 cM among 234 DArTseq-based SNP markers in the
F, segregating population from S19-3 X DodR. Significant
and putative QTLs for yield-related and morphological
traits under drought-stressed and well-watered conditions
in the F; and F, segregating generations were identified.
QTLs associated with NS, NP and PW under well-watered
conditions and IL under drought-stressed conditions in the
F; generation were co-located on LG2 with overlapping
confidence intervals, while NS, NP, NDP, SW, PW and HI
under well-watered conditions in the F, generation were
co-located on LG4 with overlapping confidence intervals.
QTLs identified under well-watered conditions would re-
flect the intrinsic genetic mechanisms underlying yield-
related and morphological traits. Multiple significant QTLs
for NDP and PW were observed, suggesting inheritance of
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double-seeded pods and pod yield was controlled by many
genes. The significant (p < 0.05) reduction observed in
yield-related and morphological traits and a decrease in
PVE under drought-stressed conditions compared to well-
watered conditions, suggesting the traits identified under
well-watered conditions were unable to fully express their
potential trait values under drought conditions. Several
QTLs with >20% of the PVE were identified as major QTLs
to control these traits, including NS, NDP and SW. The
major QTLs identified in this study are essential to support
the development of improved varieties of bambara ground-
nut in molecular-enabled breeding programmes.
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