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Human residential population distributions show patterns of higher density
clustering around local services such as shops and places of employment, dis-
playing characteristic length scales; Fourier transforms and spatial
autocorrelation show the length scale between UK cities is around 45 km. We
use integro-differential equations to model the spatio-temporal dynamics of
population and service density under the assumption that they benefit from
spatial proximity, captured via spatial weight kernels. The system tends
towards a well-mixed homogeneous state or a spatial pattern. Linear stability
analysis around the homogeneous steady state predicts a modelled length-
scale consistent with that observed in the data. Moreover, we show that spatial
instability occurs only for perturbations with a sufficiently long wavelength
and only where there is a sufficiently strong dependence of service potential
on population density. Within urban centres, competition for space may
cause services and population to be out of phase with one another, occupying
separate parcels of land. By introducing competition, along with a preference
for population to be located near, but not too near, to high service density
areas, secondary out-of-phase patterns occur within themodel, at a higher den-
sity and with a shorter length scale than in phase patterning. Thus, we show
that a small set of core behavioural ingredients can generate aggregations of
populations and services, and pattern formation within cities, with length
scales consistent with real-world data. The analysis and results are valid
across a wide range of parameter values and functional forms in the model.
1. Introduction
The world is becoming increasingly urban. In 2007, the global urban population
overtook the rural and, by 2050, two-thirds of the world population is expected
to live in cities [1]. Cities are vitally important as hubs of business, commerce,
social interaction and all the other necessary services that help us to survive.
They are highly complex, resource consuming and self-organizing systems, as
people are glued together by the services that support them but also pushed
away by the problems that densification causes.

Issues of urban density will affect transport networks, vehicle kilometres
travelled [2], public transport feasibility [3] as well as social implications such
as quality of life [4].

The existence and size of cities is a phenomenon largely driven from the
bottom up, by the choices of individuals and firms. Yet mathematical patterns
persist such as Zipf’s Law [5,6] which states that within a country or region, a
city’s size is inversely proportional to its rank within that region.
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Figure 1. Population density distribution in London from 2019 Population data [7], illustrating decreasing density overall with distance from the centre, with
accompanying patchiness. Central London in particular displays a ‘density crater’ with lower population density due to the competing presence of commercial
land use. Other patches are driven by commercial competition and other non-residential land use such as greenspace and parks.
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As a motivating example of population density within a
UK city, we show a map of London in figure 1. This is an
old city which has grown and absorbed many smaller
towns around it over time. There is a clear increase in popu-
lation towards the city centre, and a notable population crater
in the middle where services dominate. There are further
areas of patchy residential patterning seen within the city
as land uses such as parks, retail and industry outcompete
population in certain areas.

There is a global imperative to better understand how
cities can be structured to function in more efficient and
environmentally benign ways. To this end, we consider
here the emergence of patterns of population density; the
arrangement of people into and within cities. A mathematical
model that supports emergent cities and subsequent second-
ary patterning within the city may deepen our insights into
how cities’ spatial structures emerge and, more importantly,
reveal how these processes might be influenced.

In this paper, we will model and analyse the emergence of
cities using an integro-differential equation approach, assum-
ing a preference for people and services to locate near to each
other, with distance dependence encapsulated in spatial
weight kernels. Firstly, in §2, we will look at precedent
models showing the value of differential equation-based
modelling of cities and highlighting the scope for further
work. In §3, we show how population density in parts of
the UK demonstrates emergent length scales of 45� 50 km
between cities and, in appendix A, we show a length scale
of 200 km between cities in the USA. This analysis provides
the motivation for a new, explanatory, model developed in
§4, which explains the emergence of population patterns.
Linear stability analysis around the homogeneous steady
state, a technique not yet applied in the urban modelling lit-
erature, is used to predict emergent length scales from the
model in §5. This model is developed further in §6 to show
areas of within city structure, as population and services
develop out-of-phase patterns. Lastly, in §7, we add popu-
lation growth to the model to show how cities may grow
and agglomerate, developing structure as they do. We con-
clude with a discussion of our main findings and directions
for future work in §8.
2. Mathematical models for urban population
density

In 1951, Clark [8] proposed the empirical model that, exclud-
ing the central business district (CBD), population density in
cities declines exponentially with distance from the centre.
Subsequently, Newling [9] suggested a revised quadratic
exponential empirical model which captures the low central
population density that corresponds to a city’s CBD. Bertaud
[10] shows examples of nine world cities that display this
characteristic profile. Newling postulated that as the popu-
lation grows the parameters change to create and reinforce
this central dip.

One key model of polycentric configurations and the
interaction between households and firms is due to Fujita &
Ogawa [11]. Their economic agglomeration-based model
adapts Alonso’s well-known 1960s bid rent theory [12]
where retail, manufacturing and residents compete for land;
each having maximum bids for a given distance from the
CBD. In Fujita and Ogawa’s model, land is occupied by
population and firms. Households wish to maximize the
commodities that they can gain from firms by balancing
income, rent and travel costs while firms wish to maximize
their profit by balancing the value gained by locating close
to other businesses (captured by a weighted integral) against
wage and rent costs. Hypothetical city structures are set up,
and the parameters under which these are valid are analysed
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to explain the possible equilibrium states of the system. They
show that there may be both continuous and sudden struc-
tural changes in the city dynamic at the boundaries of
where an equilibrium is supportable.

In one of the first dynamic spatio-temporal models,
Bracken & Tuckwell [13] used an integro-differential equation
for population in one radial dimension. Their model has three
terms: diffusion of population, logistic growth and an integral
term that represents growth inhibition at distance r from the
city centre. This integral is proportional to the total popu-
lation between the city centre and r, emulating the negative
impacts of travel congestion and increased house prices.

A more detailed and dynamical model of the growth of
urban centres in a larger region was developed by Allen &
Sanglier [14], building on their earlier work [15]. They pro-
pose a model with logistic growth of population density at
a set of discrete locations, with a carrying capacity at each
location which depends on jobs of different types, and with
migration from higher to lower densities (penalized by dis-
tance moved). This model shows how interacting dynamics
of population and jobs or services can produce centres of
attraction; the resulting patterns always develop with
population and jobs co-located in a self-reinforcing pattern.

Alan Wilson’s entropy maximization [16] is a technique
from transport modelling that has been adapted to model
shopping power per location, considering monetary flows
to predict sites with greatest potential for service growth.
The transition from small corner shop to large supermarkets
[17] is explained by modelling the advantage of larger floor
area compared to the travel costs to such sites. Fry & Smith
[18] recently extended this approach to develop a time-depen-
dent model; they use entropy to define the profit of a
configuration and hence drive growth of each retail location.
Simplifications of their model allow asymptotic analysis on
customer preference towards larger floor areas, showing a
bifurcation from a homogeneous state where there are no
differences between centre sizes, to a ‘winner takes all’
dynamic, whereby the centre with the original maximum
size is the site that dominates the market.

Lastly, a number of recent papers on a model of reaction–
diffusion equations of population and wealth distribution
have been released [19–21]. In their statistical analysis of the
population landscape [19], the authors show spatial corre-
lation across Canada, Australia and Mongolia that cannot
be explained by environmental factors alone, highlighting
the need for explanatory modelling. In all three papers,
they model population wealth growth. Low and high
incomes both give rise to lower growth of population,
whereas growth in wealth increases with both increased
wealth and increased population. In the non-spatial system,
there are multiple steady states with complex bifurcations
leading to sudden boom or collapse in the economy or popu-
lation levels. In multiple dimensions, their stability analysis
shows the emergence of characteristic length scales.

Since the 1980s, there has been a growth of bottom-up
computational approaches to urban population modelling,
without a corresponding development of mathematical
theory to uncover general principles. Cellular automata [22–
24] and agent-based models [25–30] are powerful tools for
simulating urban populations and for making data-driven
predictions about the future state of a city, but they tend to
lack explanatory power. On the other hand, parsimonious
models of urban populations can show how the overall
shape of a city may form [9,13], how multiple centres can
dynamically emerge [15] and how to identify such transitions
between equilibria [11]. In this paper, we uncover a set of
underlying principles that can drive city formation and pat-
terning, based on spatial kernels capturing distance
preferences. We focus on the appearance of characteristic
length scales and the emergence of complementary patterns,
which is novel in the urban literature.
3. Length scales between cities
We consider two methods to quantify the length scales
between cities: two-dimensional spatial auto-correlation and
the Fourier transform of a one-dimensional transect. These
techniques are applied to UK Office for National Statistics
(ONS) mid-2016 population density data for lower layer
super output areas in England and Wales (LSOAs, average
1700 people) [31].

Spatial autocorrelation is computed by comparing
Moran’s I at a set of distances [32]. Moran’s I is a measure
from −1 to 1 of the correlation of points separated by distance
d. We group the set of pairs of LSOAs into those with cen-
troid distance 0–1 km, 1–2 km, etc., and calculate the
correlation of points in these groups.

We calculate I(k) for the whole of England and Wales
(encompassing 25 053 LSOAs), as well as showing the smaller
regions of: the North West, including Manchester, Liverpool,
Leeds, Sheffield and Nottingham (6712 LSOAs); and the
region of Oxfordshire including Oxford, Swindon and
Reading (1549 LSOAs) as can be seen on the map in figure 2.

Secondly, we take a Fourier transform of a transect
through the supporting regions. Taking a Fourier transform
breaks the population density into a sum of sinusoidal
waves and enables us to quantify the signal strength at
each wavelength. We do this for a 140 km line through York-
shire and the Midlands, encompassing Leeds, Sheffield,
Nottingham and Leicester. This is compared with a second
slice taken through Bristol, Swindon, Oxford and Luton.

The results of both approaches can be seen in figure 2. In
the North East region, we see a clear peak at a length of
around 48 km and in Oxfordshire we see peaks at 43 km
and 58 km. The Fourier transform shows similar dominant
wavelengths in both regions of around 50 km.

As a brief comparison, appendix A shows similar analysis
of length scales in the USA, which gives a longer character-
istic length of around 200 km. Although these data are not
entirely free from ambiguity, it shows that a characteristic
length scale exists of around 45 km between cities in the
UK and suggests that similar patterns but with different
length scales may be found in different contexts.
4. Integro-differential equations for population
and service dynamics

We model the spatio-temporal evolution of population den-
sity p(x,t) (number of residents per square kilometre) and
service fraction, s(x,t) (fraction of land occupied by services),
at location x and time t. Here, we assume services include
all providers of employment, leisure, retail, etc. Defining
services via land use, as opposed to an abstract term such
as utility, has the advantage of tying in both with available
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Figure 2. (a) A map of the population density of the UK showing the regions and lines analysed in this section. Background mapping © Open street map con-
tributors. (b) Autocorrelation for England and Wales, the North West and Oxfordshire regions showing a dominant length scale of 50 km and 43 km, respectively.
(c) Fourier transform of the Yorkshire/Midlands and Oxfordshire lines both showing a characteristic length scale of 45–50 km.
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data (table 1) and some cellular automata type models
[22,24]. The model simulations will be in one or two spatial
dimensions and the analysis is in one dimension. The differ-
ence between one and two dimensions will be the spatial
kernels and the ease of computation.

We begin by defining a notion of attractiveness to the residen-
tial population, A(x,t), which captures the assumptions that a
location is more attractive if there are services near to that
place, but less attractive if the location is itself full of services
(people may not want to reside in areas of dense service pro-
vision). A is then given as the product of a non-local average
of service fraction and the local fraction of non-service space

Aðx, tÞ ¼ AðSðx, tÞ, sðx, tÞÞ ¼ Sðx, tÞð1� sðx, tÞÞ, ð4:1Þ

where

Sðx, tÞ ¼
ð
wp1ðx� yÞsðy, tÞdy ¼ wp1�sðx, tÞ: ð4:2Þ
Here, is a weight kernel, which captures the non-local contri-
bution of service density. We assume a Gaussian kernel with
length scale β1, so

wp1ðxÞ ¼ Gðx, b1Þ, ð4:3Þ

where

Gðx,bÞ ¼ 1

b
ffiffiffiffiffiffi
2p

p e�ðx2=2b2Þ (In 1D)

and Gðx,bÞ ¼ 1
2pb2 e�ðjxj2=2b2Þ (In 2D)

9>>>=
>>>;

Such a kernel means that points that are further away from x
have less influence than points near x. It is used elsewhere in
the urban modelling literature [16,38]. The rate of decay is
given by β where larger β gives a more spread shape, synony-
mously with the standard deviation of a normal distribution.



Table 1. Table of parameters corresponding to equations (4.1) to (4.10) that define dp/dt and ds/dt. These parameters are based on UK data from publicly
available data sources.

parameter definition default value justification

βs length scale for the kernel ws,

characterizes how close services wish

customers to be

5 km mean trip distance to shopping in an urban conurbation is

4:7 km [33]

b p1 length scale used in kernel wp1

corresponding to how near population

wishes to be to services

1 km assume attraction of an area is given by local services; those within

walking distance. Average walk to shops is 1:1 km [33]

b p2 length scale corresponding to how far

population is willing to move to a

more desirable location

10 km in 2013–2014, the median household move was in the ‘5-10 miles’

group [34]

λ population scale parameter for the

carrying capacity function,

equation (4.10)

20000 pe km�2 in London wards 0 < p < 14 000 [35] and 0 < s < 0.4 (assuming s

to be non-domestic land use) [36]. If P = λ then s will be

expected to approach σ(λ) = 1− (1/e)≈ 0.63 which is

significantly higher than the value for s in London. Since σ(P)

is an increasing function, this means that λ must be larger than

the maximum population density in London. Selecting λ =

20 000 seems a reasonable estimate for this upper end of

population density and service provision

μ steepness parameter for the carrying

capacity function

3 taking the mean of London wards gives �p ¼ 8400 pe km�2 [35]

and �s ¼ 0:06 (assuming s to be non-domestic land use) [36].

Using these values and solving the homogeneous steady-state

equation (5.1) gives μ≈ 3.2, assuming λ = 20 000

D rate of change of population density in

an area

2 yr�1 at the homogeneous state, the number of people who move in or

out of a place is given by D · p0 · A0 = D · p0 · σ( p0) · (1−
σ( p0)). In London in 2018-19, flows in and out were

approximately 290 pe km�2 yr�1 [37] and population density,

p0, was approximately 5700 pe km
�2. This gives D≈ 2.2

g speed of service followers per year 2 yr�1 ignoring f, ds/dt is at its maximum value when σ = 1 and s =

0.5, giving ds/dt = 0.25g. At this rate it will take 2/g years for s

to reach σ = 1. g = 2 (1 year) seems a sensible timescale for

this maximal rate

f speed of service innovators per year 0:05 yr�1 we assume that change is mostly driven by logistic growth and

therefore service innovation is slower than service followers. If

s = 0, ds/dt = f · σ( p). At this rate it would take 1
f ¼ 20 years

to reach the steady state
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The parameter β1 therefore characterizes how near the
residential population wishes to be to services.

We then assume that the rate of population movement
from location y to x is proportional to the attractiveness of
x multiplied by the density of potential movers at y and
weighted according to the distance between the locations
(short distance moves being more likely [34]). The rate of
change in population at a location x will therefore be given
by the rate of moving from all other locations y to x (moves
into x), minus the rate of moving from x to all other locations
y (moves out of x):

dp
dt

ðx, tÞ ¼ D
ð
½AðxÞpðyÞ � AðyÞpðxÞ�wp2ðx� yÞdy, ð4:4Þ
where D measures the overall rate of moving and

wp2ðxÞ ¼ Gðx, b2Þ, ð4:5Þ

gives a Gaussian dependence of the rate on the distance
moved.

The dynamics of the service fraction, s(x,t), is assumed to
be driven by a demand that is an increasing function of the
residential population that can access services at x. Growth
in the service fraction is therefore driven by innovators that
start new businesses when demand exceeds supply, and
expansion of existing businesses, imitators. However, if
supply exceeds demand, then competition would force
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some out of business. We have

ds
dt

ðx, tÞ ¼ ðf þ gsÞ(sðPÞ � s): ð4:6Þ

The rates f and g represent the speed of service innova-
tors and imitators respectively. The carrying capacity for
services for a given population density is σ(P(x,t)). P(x,t)
is a weighted integral of p(x,t), where the third and
final kernel in the model, ws, encapsulates dependence of
the carrying capacity on the population distribution. The
kernel here captures the typical distance residents travel to
places of work, retailers and other services. The equation
for P(x,t) is

Pðx, tÞ ¼ ws � pðx, tÞ: ð4:7Þ

We assume the spatial weight kernel ws is Gaussian;
specifically

wsðxÞ ¼ Gðx,bsÞ: ð4:8Þ
From the definition of s(x,t) being the fraction of land
occupied by services, we require 0≤ s≤ 1 and so 0≤ σ≤ 1
also. It is natural to expect that the greater the popula-
tion near x, the more services can be supported at x by
this population, therefore σ(P) should be a non-decreasing
function. We assume that carrying capacity for services will
take the form

sðPÞ ¼ 1� e�(P=l)m : ð4:9Þ
This function has the features that σ(0) = 0, lim p→∞σ( p) = 1
and dσ/dP > 0. σ can be understood as the potential for
service provision for a given population. The parameter λ
represents the population scale and μ represents the shape
of the function. If μ≤ 1 this function is concave and if μ > 1
it is sigmoidal with maximum steepness increasing with μ.
The sigmoidal form would model a situation in which, at
low populations, the benefits of setting up a business
barely exceed the fixed costs and service carrying capacity
increases weakly. As the population increases, there may be
a tipping point where the benefits gained increasingly out-
weigh the costs, leading to a marked steepening of the
carrying capacity function, which then levels off as the
population approaches saturation.

For simplicity, we assume initially that there will be no
growth of the total population. Instead, we will analyse
how the steady states of this model depend on the total
population.

Equations (4.4) and (4.6) give a description of the spatio-
temporal interaction between population and services. A dia-
gram explaining these interactions can be seen in figure 3a.
Explanations and estimates for the default parameters corre-
sponding to UK data are given in table 1. Numerical methods
are explained in appendix B.

Simulations of the model with the kernels and parameters
listed show that the system tends either to a spatially homo-
geneous state, where population and services are completely
mixed, or spatial patterns emerge. These patterns take the
form of areas of increased population and service density,
as shown in figure 3b. An initial homogeneous population
is seeded with small random perturbations. After 50 years,
we start to see some areas growing more than others and,
by 100 years, clear city structures have formed. The largest
cities have a slight density crater in the city centre.
Continuing the simulation to 150 years shows solidification
of the city structure occurring as people move to the city.
The length scale of the pattern is 53 km according to the
spatial autocorrelation (figure 3c).
5. Spatial instability leads to patterned steady
states

We wish to understand the conditions in which a homo-
geneous steady state or a spatial pattern emerge. For any
homogeneous {p0, s0}, equation (4.4) will be zero and there-
fore the homogeneous steady state for p is p0 ¼ �p, the
average population density, which is dictated by the initial
conditions. Equation (4.6) gives the homogeneous steady
state for s as

s0 ¼ sðp0Þ: ð5:1Þ

To better understand which wavelengths we expect to
emerge from an unstable homogeneous state, we consider
the perturbation from the steady state

p ¼ p0 þ ~pðx, tÞ, s ¼ s0 þ ~sðx, tÞ: ð5:2Þ
In particular, we look for Turing-like instabilities; that is by
looking at sinusoidal perturbations of frequency k, given by

f~pðx, tÞ, ~sðx, tÞg ¼ f�pðtÞ eikx, �sðtÞ eikxg: ð5:3Þ
Linearizing, we obtain a problem of the form

_�p
_�s

� �
¼ Jðp0, s0, kÞ �p

�s

� �
ð5:4Þ

so that we can analyse the stability matrix J. Calculation of J
can be found in appendix C.1, giving

Jð p0; s0; kÞ

¼
�Ds0ð1� s0Þð1� ŵ p2ðkÞÞ Dp0ð1� ŵ p2ðkÞÞ�

ðð1� s0Þŵ p1ðkÞ � s0Þ
ð f þ gs0Þs0ð p0ÞŵsðkÞ �ð f þ gs0Þ

2
64

3
75:
ð5:5Þ

For each frequency, k, perturbations are unstable if at least
one eigenvalue of J(k) has positive real part. We plot the real
part of the leading eigenvalue against spatial frequency in
dispersion relations to see the modes with a positive
growth rate. We plot these dispersion relations as we vary
the average population in the model in figure 4a.

This shows that for small populations, modes of lower fre-
quency grow, but higher frequency, shorter wavelength
modes dissipate. As population density increases, the fastest
growing mode moves from five peaks in the domain (40 km
wavelength) to 2–3 peaks (60–100 km). For larger population
densities, the dispersion relation predicts that all pertur-
bations will dissipate.

We can further analyse this Jacobian to calculate con-
ditions for any wavelengths to be unstable. We show in
appendix C.1.1 that there are unstable frequencies if and
only if

s0ð1� s0Þ
p0s0ðp0Þ þ s0 , ð1� s0Þ, ð5:6Þ

and that, if this holds, then instability occurs in a window
(0, kc) for some critical frequency kc.
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We can solve for equality in (5.6) using (5.1) to find the
bifurcation point at which spatial instability arises, {p0, s0}.
For the carrying capacity function given by equation (4.9),
the bifurcation point in s occurs at the solution of s0 =
μ (2s0− 1) ln(1− s0). The bifurcation point depends only
on μ and the equation has a solution for μ≥ 1. The parameter
μ is the steepness of the change in carrying capacity for
services for a change in population. It is concave with
respect to population density if μ < 1 and sigmoidal other-
wise. Using the value of μ = 3 in figure 4, we calculate
s0 = 0.37, p0 = 15 360 for the bifurcation point.
For a more general σ(p), if equation (5.6) holds, we must
have p0σ0(p0) > s0 = σ(p0). Although technical exceptions can
be found, this suggests that σ should be convex on (0, p0) for
instabilities to the homogeneous steady state to arise. This
model analysis predicts that when service potential is highly
reactive to a change in population (convex σ(p)) then we
expect pattern generating instabilities to arise. Conversely, if a
change in population does not drive a sufficient reaction in ser-
vice potential then we expect such a perturbation to die away.

Moreover, if equation (5.6) holds and there are instabilities
of the homogeneous steady state, then . Regardless of the
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carrying capacity function, instability can only occur where
we have sufficiently small population densities and
services. If the population is too high, the model predicts
that there would be urban sprawl rather than further
agglomeration.

We can also see that for a solution to be unstable to a
certain perturbation, that perturbation must have a sufficien-
tly long wavelength. In an urban context, this means that we
do not expect to see lots of very small but high-density cities
next to each other. In this case, we expect agglomeration
would occur. However, if cities are far enough apart, we
can expect them to remain distinct.

Having analysed the homogeneous steady state, we can
now look at the patterned steady states and determine their
stability. These can be calculated using a process of numerical
continuation [39]. Beginning with a steady state produced by
simulation, we track how this state changes as we vary the
average population size, �p. This allows us to see the regions
in which a patterned state can exist and to explore the bifur-
cation points. This can be seen in figure 4b. The patterned
states emerge at low average populations until a series of
bifurcation points where each becomes stable. The last bifur-
cation to the homogeneous state is at confirming what we
saw with the dispersion relation. Between �p ¼ 15 360 and
�p ¼ 18 000, both the homogeneous steady state and the pat-
terned state are stable and for �p . 18 000 only the
homogeneous state is stable.

Figure 4b suggests that the only stable patterned state is
the single cluster pattern. This is due to the presence of meta-
stable steady states, where the instability can only be seen by
simulating the system for an extreme length of time, as in
figure 4c. All the multi-peak branches display this metastabil-
ity. However, the timescales at which this agglomeration
occurs might be of the order of greater than a millennium
or even more and these steady states are therefore only
very weakly unstable.



Table 2. Supplement to table 1. Additional parameters for equations (6.1) and (6.2).

parameter definition
default
value justification

ap secondary length scale used in kernel wp1

corresponding to the population’s

preferred distance to services

1:5 km given b p1 ¼ 1 km, ap = 1.5 creates distinct, off centre, peaks

without separating the two Gaussians completely

α1 competition parameter. How much space

does each person take away from

services

1.5 × 10−5

km2 pe�1

when population dominates, α1 p = 1. In London wards, the

maximum population density is 28 863 pe km�2 which

would give a1 ¼ 3:53� 10�5 km2 pe�1. We assume less

competition than this [35]
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We have shown how distinct cities can form where the
average population density is sufficiently low and there is
sufficient reaction by services to a change in population.
Unstable perturbations to the homogeneous steady state
must be of sufficiently long length scale showing how
we expect agglomeration to occur over longer rather than
shorter distances. The dominant unstable wavelength of
such perturbations can be seen in the dispersion relations
given by the linear stability analysis of the steady state. We
also saw the presence of bifurcation points and metastable
steady states in the system which shows how sudden agglom-
eration may occur, particularly as population increases.
6. Secondary patterning when services compete
for space and residents avoid high service
density

London in figure 1 shows an example of multiple patterning.
Firstly, aggregation brings people and services together to form
thecity itself andthere isagrowth inpopulationdensity towards
the city centre. However, there is secondary patchy patterning
on top of this framework. Thismay bedriven bypeople and ser-
vices occupying distinct areas (one is high when the other is
low)—seen in particular at the centre of the city.

Within our model framework, we make two further
assumptions. We assume that people’s desire is to locate
‘near but not too near’ to the services that support their
needs; and that there is competition for space between
people and services within cities. The first assumption
about people’s location choice can be built into kernel wp1

by using a Gaussian kernel that has been shifted off centre
by distance ap in each direction and then summed

wp1ðxÞ ¼
1
2
(Gðxþ ap,b p1Þ þ Gðx� ap,b p1ÞÞ: ð6:1Þ

G is the Gaussian previously defined in equation (4.4). This
assumes that there is an ideal distance ap which people
wish to be from service locations. Moreover, competition is
introduced into equation (4.6) as services compete for space
with residents.

ds
dt

ðx, tÞ ¼ ðHðsðPÞ � ðsþ a1pÞÞ f þ gsÞ � (sðPÞ � ðsþ a1pÞ):
ð6:2Þ
With competition now included, the space requirements of
people can overcome the potential for service growth so we
assume that if there is no potential for service growth then
there are no innovators, f. This is why we have a factor of
H(σ(P)− (s + α1p)), where H is the Heaviside step function.
Importantly, this ensures that s = 0 is a lower bound for ser-
vices. The default values for the new parameters ap and α1
can now be found in table 2.

Including competition can give both in-phase and out-of-
phase patterning at different spatial scales (figure 5a,b). In-
phase patterns are the co-location of high-densities of
people and services, such as seen on a large scale in cities.
Out-of-phase patterns are where people and services
occupy distinct and complementary areas; here they typically
have shorter length scales and occur as secondary structures
within cities.

In this example, a three bump solution with no secondary
pattern (figure 5a) persists at the same parameter values as a
two bump solution with shorter wavelength secondary pat-
terning within each bump (figure 5b). This secondary
pattern has a wavelength of around 5 km.

In order to understand the emergent length scales, we
again use linear stability analysis around the homogeneous
steady state, {p0, s0}. The steady state for p is given by
p0 ¼ �p, the average population density which is dictated
by initial conditions. For smaller population densities
(�p , 11 500), we have that σ( p0) < α1p0 and so the spatially
homogeneous steady state is p0 ¼ �p, s0 = 0. There will not
be sufficient demand for services to overcome the compe-
tition for space and so no services can be supported.
Patterned states can exist with these average population den-
sities but they are not emergent from the homogeneous
steady state. Instead, they would have to emerge from
different initial conditions.

For �p . 11 500, we have that σ( p0) > α1p0 and the steady
state is

p0 ¼ �p, s0 ¼ sðp0Þ � a1p0: ð6:3Þ

The Jacobian is given by

Jð p0; s0; kÞ

¼
�Ds0ð1� s0Þð1� ŵ p2ðkÞÞ Dp0ð1� ŵ p2ðkÞÞ�

ðð1� s0Þŵ p1ðkÞ � s0Þ
ð f þ gs0Þðs0ð p0ÞŵsðkÞ � a1Þ �ð f þ gs0Þ

2
64

3
75:

ð6:4Þ
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The Jacobian not only enables us to see whether
an instability emerges but we can also see the phase of this
perturbation; whether we expect p and s to grow in the
same places or to separate. We do this by looking at
the eigenvector corresponding to the unstable eigenvalue.
Figure 5c shows the change in the dispersion relation as we
increase the initial population. At �p ¼ 5000, the homo-
geneous state is given as s0 = 0. At �p ¼ 12 000, both in- and
out-of-phase patterning are predicted. As we increase the
population density to no pattern is unstable. Lastly, as the
population density further increases, the competition forces
out of phase patterning again. Moreover, we see that in
phase patterning occurs at similar frequencies to before,
with a wavelength of around 50 km. Out-of-phase patterning
occurs at a shorter wavelength of around 5 km, which is a
frequency of 1.25. In order for out-of-phase patterns to
be predicted by the linear analysis, we must have α1 > 0
and ap > 0 (appendix C.2). These are necessary but not
sufficient conditions.

Figure 5d maps an example of where in the α1, ap par-
ameter regime in- and out-of-phase patterning is predicted.
The homogeneous steady state is given by s0 = σ( p0)− α1p0.
Therefore, as we increase α1 so the steady state for s0
will decrease. If the original homogeneous steady state is
stable, as in figure 5, introducing some competition may
induce in-phase patterning. Increasing ap, the ideal length
people wish to be from services, can induce out-of-phase
patterning, as long as there is sufficient competition to
drive it. For very large α1, competition for space means that
services do not have the population nearby to overcome
this competition and they die out completely, leaving a
stable steady state again.

The out-of-phase patterning seen in figure 5b is not pre-
dicted by the linear stability analysis of the homogeneous
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steady state for this average population yet it can persist
across the parameter space. In this particular case, such pat-
terning is secondary, forming after an initial city has grown
and developed.

In summary, this model produces both in- and out-
of-phase patterns of different spatial lengths; the new
out-of-phase patterning is of shorter wavelength. Within a
city context, the desire for co-location agglomerates people
into cities and competition for space creates divisions in
land use.
7. Including population growth and competition
shows cities emerging before secondary
patterning appears

Lastly, we include population growth in the model via logis-
tic growth up to some carrying capacity with competition for
space from services. This changes equation (4.4) to be

dp
dt

ðx, tÞ ¼ D
ð
½AðxÞpðyÞ � AðyÞpðxÞ�wp2ðx� yÞdy

þ rp 1� pþ a2s
c

� �
: ð7:1Þ

A schematic of the full model can be seen in figure 6a and
the new parameter values in table 3 with explanations in
appendix E.

Similarly to the previous case, in- and out-of-phase pat-
terning are possible, depending upon the value for the
carrying capacity c. This can be seen in dispersion relations
as we vary the carrying capacity in figure 10 and in the
example in figure 6. The homogeneous steady state from
dp/dt is now dependent upon the carrying capacity c. The
steady state is now given by the solution to

p0 þ a2s0 ¼ c, s0 ¼ sðp0Þ � a1p0: ð7:2Þ



Table 3. Supplement to tables 1 and 2 showing the default values for the new parameters in equation (7.1)

parameter definition default value justification

r intrinsic population growth rate 0:05 yr�1 see appendix E

c carrying capacity for population

density

12 000

pe km�2

c will define p, therefore we consider a similar range

α2 competition of services to

population density

100 000

pe km�2

at steady state, p + α2s = c. If p ¼ 10 000 pe km�2, and s = 0.05,

then a2 ¼ 100 000 pe km�2
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We note that it is possible to keep the previous steady
state {p0, s0} unchanged by choosing c as

c ¼ p0 þ a2s0: ð7:3Þ

The Jacobian used to produce these dispersion relations is
as follows:

Jð p0; s0; kÞ

¼

Dp0ð1� ŵp2ðkÞÞ�
�Ds0ð1� s0Þð1� ŵ p2ðkÞÞ �

rp0
c

ðð1� s0Þŵ p1ðkÞ � s0Þ
� ra2p0

c

ð f þ gs0Þðs0ð p0ÞŵsðkÞ � a1Þ �ð f þ gs0Þ

2
6666664

3
7777775
:

ð7:4Þ
The effect of logistic growth is generally stabilizing for long
wavelength perturbations. In particular, homogeneous per-
turbations would return to the steady state. However, the
competition parameter α2 will tend to be destabilizing for
higher spatial frequencies, assuming that population and ser-
vices both compete sufficiently for space (appendix C.3).

Figure 6c shows an example simulation of the full model
in two dimensions, demonstrating growth of cities and sec-
ondary, out-of-phase, patterning that gives separation of
population and services. Population initially grows but is
not sufficient to drive urbanization. Then, after a number of
years, cities form as there is sufficient population to drive
the demand for services and colocation. Continuing time for-
ward further shows that, within these cities there are distinct
areas of service provision, surrounded by population. This
model more realistically captures the long-term growth
dynamics of population into urban areas.
8. Discussion
8.1. Conclusion
The emergence of spatial structure in human populations has
received relatively little attention when compared with the
quantification of urban patterns. Much focus has been on
measuring structure rather than understanding or predicting
where those structures come from. Inspired by typical length
scales that are apparent in population density data between
cities, here we have shown that a simple set of plausible
local and spatial interactions can explain the emergence of
cities via reinforced aggregation. While conceptually simple
in comparison with computer modelling techniques such as
cellular automata and agent-based models, these models
benefit from deeper explanatory power; offering the potential
not just to describe what we currently see in cities but also to
explain how such dynamics emerge.
The hierarchy of integro-differential equation models
developed here focuses on spatial kernels to capture the dis-
tribution of non-local dependencies. This model shows that
the preference for population location in proximity to services
can either lead to a completely mixed homogeneous state or
drive the emergence of urban centres, seen in a spatial pat-
tern. Numerical continuation and linear stability analysis of
the steady states of this model shows how different length
scales emerge, depending upon the initial conditions and
parameters (figure 4). In phase spatial instabilities are
shown to be destabilizing only if the perturbation is of a suf-
ficiently long spatial scale and only if a change in population
density produces a sufficient change in service density. One
observation from this model is that many steady states are
metastable; over long time periods, we would see transitions
at the merging of city centres as cities agglomerate.

Within cities, we also see patterning emerge around local
services as long scale co-location and short scale separation of
population and service provision occurs. In the model, this is
driven by competition for space and desire by people to be
near, but not too near, to the services they need to support
them (figure 5).

Length scales within the model are typical of those seen
in the data for the UK. Differences in parameters such as
house moves and preferred travel distances may explain
different length scales between the UK and the USA. In the
USA, people might tend to move greater distances, both to
move house and to travel to their desired services, which
gives rise to sprawling metropolises. Conversely, the rapidly
urbanizing cities of China and Brazil may be driven by
people moving long distances to be as close as possible to
services, generating high-density distinct megacities. Our
modelling approach would give valuable insight into the
different city formations around the world.
8.2. Limitations and future developments
Our parsimonious approach has several limitations. Firstly,
by using an aggregated differential equation methodology,
we have gained mathematical tractability but lost the effects
of population heterogeneity. As explained in the literature
review, we believe that this approach provides a useful coun-
terpoint to the increasingly popular bottom up agent-based
methodologies.

Secondly, we have considered parameters that are static
over time. Technological advances and societal changes will
doubtless affect the functions and kernels that capture behav-
iour. This simplification enables us to provide mathematical
rigour to our conclusions that would not be possible with
further complicating assumptions. Such work is beyond the
scope of this paper, but we motivate the discussion with
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approximately 16 km. As time continues, the pattern coarsens and larger agglomerations form with a wavelength of about 100 km. Further details of the parameter
variation can be found in appendix F.
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one example of dynamically changing length scale par-
ameters in figure 7 to highlight the potential of our
modelling approach.

Thirdly, we have assumed that people (and services) are
motivated solely by coexistence preferences. In reality,
people’s desires will also be affected by multiple competing
interests such as employment opportunities, housing stock
and house prices, transport and more—all of which require
attention. This would be further confounded by the disaggre-
gation of people according to factors such as income or
ethnicity, or disaggregation of service types into retail, indus-
try, etc. It is not easy to determine the relative importance of
such influences or disentangle the effects of each. Our focus
on colocation preferences of people and services has enabled
us to elicit understanding regarding the implications of those
preferences for patterning and urban length scales.

Despite these limitations, our approach is intuitive and
mathematically rigorous. By developing an aggregated form
of model, we have sidestepped the myriad of uncertainties
involved in bottom-up modelling and minimized the varia-
bility. We hope that this exploration can be a springboard
for future developments to accommodate these complicating
factors which could deepen our understanding of the spatial
development of populations.
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Appendix A. Length scales in the USA
Figure 8 shows the results from length scale analysis of popu-
lation density data from the north east USA, from the 2010
Census at census tract level [40] similarly to §3. Autocorrela-
tion on a region of Indiana, Ohio and Kentucky demonstrates
a spatial length scale of 200 km. We also take the Fourier
transform of a slice through key cities on the East coast:
Washington, Philadelphia, New York and Boston, which
gives a similar 200 km length scale. The USA seems to
show a longer characteristic length scale than the UK.
Appendix B. Numerical methods
For timestepping and numerical continuation, we use a code
structure from Avitabile [39]. We use a pseudospectral colloca-
tion method to compute convolutional integral operators.
Hence, we expect spectral accuracy for the spatial discretization
(albeitwehavenotusedde-aliasing). This requires theuseofper-
iodic boundary conditions; implying that the region considered
is similar to its neighbouring regions.

To converge on and continue steady-states, we perform
Newton-GMRES iterations with tolerance 0.001. For the
time-stepper, we use the same spatial grid and discretization
method as the steady-state calculations, and we employ
Matlab’s in-built ode113 routine, with default tolerances.
Appendix C. Mathematical analysis of the model
C.1. Linearization of the model without competition or

population growth
Here, we show the linearization of _p, _s from equations (4.4)
and (4.6) for use in the Numerical continuation algorithm

https://doi.org/10.5281/zenodo.5034211
https://doi.org/10.5281/zenodo.5034211
https://doi.org/10.5281/zenodo.5034211
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Figure 8. (a) Map of the population density of north east USA showing the areas analysed. Background mapping © Open street map contributors. (b) Correlogram
for Indiana/Kentucky/Ohio region showing length scale peaks at 200 km and 400 km. (c) Fourier transform of the line from Washington to Boston, giving a corre-
sponding wavelength of about 200 km.
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and then obtaining the Jacobian used in the linear stability
analysis. We define

Fðp, sÞ ¼ _pðx, tÞ
_sðx, tÞ

� �
: ðC 1Þ

Then we calculate Fðp0 þ ~p, s0 þ ~sÞ � Fðp0, s0Þ where {p0,
s0} are the current state and f~p, ~sg are the perturbations
from this state of order ϵ. Using a Taylor expansion for σ,
we get

Fðp0þ~p,s0þ~sÞ�Fðp0,s0Þ
e

¼ D½A0 �ðwp2 �~pÞþ ~A�ðwp2 �p0Þ�~p�ðwp2 �A0Þ�p0 �ðwp2 � ~AÞ�Þ
ðfþg�s0Þ�ð~p�s0ðp0Þ�~sÞþg�~sðsðp0Þ�s0Þ

 !
,

ðC2Þ
where

A ¼ A0 þ ~A
¼ ðwp1� s0Þ � ð1� s0Þ þ (ðwp1� ~sÞ � ð1� s0Þ � ðwp1� s0Þ � ~s):

ðC 3Þ

In order to look at different spatial frequencies, we con-
sider perturbations that are sinusoidal by considering

f~pðx, tÞ, ~sðx, tÞg ¼ f�pðtÞ eikx, �sðtÞ eikxg: ðC 4Þ

We will use the fact that the Fourier transform of a
Gaussian kernel, as defined in (4.9), is ŵðkÞ ¼ e�2ðp2b2Þk2 .
This is also Gaussian and ŵð0Þ ¼ 1 for any β. It has a
maximum at k = 0 and 8k, 0 � ŵðkÞ � 1. Moreover, we
define the kernel wp12 :¼ wp1 �wp2 . In the case that wp1

and wp2 are Gaussian, the convolution theorem gives
that: Fðwp12Þ ¼ Fðwp1ÞFðwp2Þ ¼ e�2ðp2b2
p1
Þk2 e�2ðp2b2

p2
Þk2 ¼

e�2p2ðb2
p1
þb2

p2
Þk2 . Thus wp12 is also a normalized Gaussian

kernel with parameter
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b 2

p1 þ b 2
p2

q
.

We have that for any kernel w,

w � ~p ¼ w � �pðtÞ eikx ¼ �pðtÞ
ð1
�1

eikðx�yÞwðyÞdy

¼ �pðtÞ eikx
ð1
�1

e�ikywðyÞdy ¼ ŵðkÞ �pðtÞ eikx: ðC 5Þ

Similarly, we have w �~s ¼ ŵðkÞ�sðtÞ eikx. Using this, we will
calculate the Jacobian of the temporal change in coefficients �p
and �s close to the steady state by substituting ~p ¼ �p eikx and
~s ¼ �s eikx into (C 2). At the homogeneous steady state s0 =
σ( p0), w ∗ p0 = p0 and w ∗ s0 = s0.

Factoring out eikx and writing in matrix form, we get

_�p
_�s

 !

¼
�Ds0ð1� s0Þð1� ŵ p2ðkÞÞ Dp0ð1� ŵp2ðkÞÞ�

ðð1� s0Þŵ p1ðkÞ � s0Þ
ð f þ gs0Þs0ð p0ÞŵsðkÞ �ð f þ gs0Þ

2
664

3
775 �p

�s

� �
:

ðC 6Þ
This Jacobian can be validated against the simulation to

show it correctly approximates the behaviour of the system
close to the steady state.
C.1.1. Conditions for spatial instability
Using the Jacobian from equation (5.5), also shown above in
equation (C 6), we wish to prove the following:
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For Gaussian kernels, there are unstable frequencies if and
only if s0(1− s0)/(p0σ0(p0)) + s0 < (1− s0). If this holds,
then instability occurs in a window (0, kc) for some critical
frequency kc.

If the system is stable, then both eigenvalues of J will
have negative real part which is the case when trðJÞ and
detðJÞ . 0. We have that for the Fourier transform of a
Gaussian kernel, ŵ � 1. Moreover, s0≤ 1 and so tr(J ) < 0 for
all frequencies k.

Therefore, we only need to look at the sign of detðJÞwhich
can be rearranged as

detðJðkÞÞ ¼ Dð1� ŵ p2Þðf þ gs0Þp0s0ðp0Þ

� s0ð1� s0Þ
p0s0ðp0Þ þ s0ŵs � ð1� s0Þŵsŵ p1

� �
: ðC 7Þ

We note that det(J(0)) = 0 and limk→∞ det(J(k)) =D( f + gs0)
s0(1− s0) > 0. Therefore,we look for a second zero of det(J(k)). If
a second solution to det(J ) = 0 exists at k = kc and no third sol-
ution exists, then det(J ) < 0 for k∈ (0, kc] and det(J ) > 0 for
k∈ (kc,∞); that is, the steady state is unstable to perturbations
with wavelengths k∈ [0, kc).

In order to analyse det(J ), we first define FðkÞ ¼
s0ð1� s0Þ=ð p0s0ðp0ÞÞ þ s0ŵsðkÞ, GðkÞ ¼ ð1� s0ÞŵsðkÞŵp1ðkÞ.
For k > 0, det(J(k)) = 0 iff F(k)−G(k) = 0. We claim that a non-
zero solution to F(k) = G(k) exists if and only if s0(1− s0)/(p0σ0( p0-
)) + s0 < 1− s0 and that if it exists, this solution is unique.

We will use the fact that ŵsðkÞŵ p1ðkÞ ¼ e�p2k2ð1=bsþ1=b p1
Þ.

From the shape of Gaussian functions, ŵsŵ p1 , ŵs 8 k . 0.
Secondly, ŵsŵ p1 is steeper than ŵs. That is that
ðd=dkÞðŵsŵ p1Þ , ðd=dkÞŵs , 0.

Now assume that s0(1− s0)/( p0σ0( p0)) + s0 < (1− s0). Then
F(0) <G(0). However, limk→∞ F(k) = s0(1− s0)/( p0σ0( p0)) > 0
and limk→∞ G(k) = 0. Therefore, there must be at least one
crossing point and hence a solution to det(J ) = 0.

Conversely, if s0(1− s0)/( p0σ0( p0)) + s0 > 1− s0, we must
look at two cases.

Case 1: s0 > (1− s0). For all k > 0,

FðkÞ � s0ŵs . ð1� s0Þŵs . ð1� s0Þŵsŵ p1 ¼ GðkÞ:

Therefore, FðkÞ = GðkÞ 8 k . 0.
Case 2: s0≤ (1− s0). We have that F(0) = s0(1− s0)/

( p0σ0( p0)) + s0 > 1− s0 =G(0).

F0ðkÞ ¼ s0
dŵs

dk
� ð1� s0Þdŵs

dk
� ð1� s0Þ

dðŵsŵ p1Þ
dk

¼ G0ðkÞ:

So we have that F0(k) >G0(k) and F(0) >G(0). Therefore,
these two functions are never equal and hence there is no sol-
ution to F(k) =G(k). Thus a second solution to det(J ) = 0 exists
if and only if s0(1− s0)/( p0σ0( p0)) + s0 < 1 – s0.

Finally, we must show the solution is unique. Assume
that there is a solution to F(k) =G(k). This implies that
s0(1− s0)/( p0σ0( p0)) + s0 < 1− s0 and hence s0 < 1− s0. Using
case 2 from above, F0ðkÞ . G0ðkÞ 8 k . 0. As the derivatives
are never equal, Rolle’s theorem shows that the solution
must be unique in the range k > 0.

Thus we have showed that det(J ) > 0 for sufficiently large
k. Therefore, if there are no solutions to F(k) =G(k), then
det(J ) > 0 for all k > 0. A solution can occur if and only if
s0(1− s0)/( p0σ0( p0)) + s0 < 1− s0 and if it exists, this solution
is unique

We note that in a typical reaction–diffusion equation,
Turing instabilities occur due to the interplay of the two
processes (reaction and diffusion). However, this result
shows that, in our model, instabilities occur only if the
reaction of services to a change in population is sufficient.
It is independent of the relative rates (figure 9). This indepen-
dence is largely due to the conservation of population (in the
first two model variations) which means that there is a zero
eigenvalue at frequency k=0 and instabilities occur in a
window [0, kc] rather than [k1, k2] as in a reaction–diffusion
equation.

C.1.2. Dispersion relations for other parameters
Figure 4a shows dispersion relations for the default set of par-
ameters as the total population �p varies. Here, we show
dispersion relations for the other parameters in the model
illustrating how changing them modifies the predicted emer-
gent pattern.

This gives some idea of the impact that uncertainty
about parameter values may have on model predictions.
Overall, pattern formation is robust and predicted across a
wide range of parameters. On the other hand, the specific
wavelength of predicted patterns does vary with certain
key parameters as expected; parameters controlling length
scales of movement (b p1 , b p2 , bs) and feedback (μ) signifi-
cantly modulate wavelengths, whereas those affecting rates
of movement (D) and service growth (f, g) have a much
weaker effect. See figure 9.

C.2. Out-of-phase patterning requires α1 > 0 and ŵ p1ðkÞ , 0
Here, we extend the linear analysis to the model with
services competing for space with population (α1 > 0) and
show that out of phase spatial instability is predicted
only if α1 > 0 and ŵ p1ðkÞ , 0. This condition on the popu-
lation location preference kernel corresponds to the
population preferring to move to locations near to but some
preferred distance from services (ap > 0 in equation (6.1)).

Including competition, the linearized dynamics close to
the spatially homogeneous steady state is given by

_�p
_�s

 !

¼
�Ds0ð1� s0Þð1� ŵ p2ðkÞÞ Dp0ð1� ŵp2ðkÞÞ�

ðð1� s0Þŵ p1ðkÞ � s0Þ
ð f þ gs0Þðs0ð p0ÞŵsðkÞ � a1Þ �ð f þ gs0Þ

2
664

3
775 �p

�s

� �
:

ðC 8Þ
As previously, linear stability occurs when trðJðkÞÞ , 0

and detðJðkÞÞ . 0. For Gaussian ŵ p2 , the trace is negative
for all k and therefore there are instabilities occurring for
det(J(k)) < 0.

detðJðkÞÞ ¼ Dð1� ŵ p2ðkÞÞðf þ gs0Þ
� (s0ð1� s0Þ � p0ðs0ðp0ÞŵsðkÞ � a1Þðð1� s0Þŵ p1ðkÞ � s0Þ)

ðC 9Þ

detðJÞ � 0 , s0ð1� s0Þ
� p0ðs0ðp0ÞŵsðkÞ � a1Þðð1� s0Þŵ p1ðkÞ � s0Þ ðC 10Þ

, s0
p0

ð1� sðp0ÞÞ þ s0s0ðp0ÞŵsðkÞ

� ð1� s0Þðs0ðp0ÞŵsðkÞ � a1Þŵ p1ðkÞ: ðC 11Þ
We have 1− σ( p0) > 0 and, for Gaussian ws, ŵs . 0. This
means that the left-hand side is positive i.e. ðs0= p0Þð1� sðp0ÞÞ
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Figure 9. Dispersion relations for the growth rate of spatial perturbations to a spatially homogeneous steady state in the conservative model for population and services
dynamics given in §4, for the indicated values of the parameters b p1 , bs, b p2 , m, D, f and g. For all length scales β, as they increase the length of pattern increases.
Increasing b p1 and βs slows the rate of patterning whereas b p2 increases the speed of patterning. As shown in §5, small values of μ show stability to all frequencies.
As μ increases, the instability emerges from the origin with long wavelengths (small k) and shifts to shorter wavelengths (larger k). The rates f, D and g will, as expected,
increase the growth rate of perturbations, but do not make any noteworthy change to the wavelength of the fastest growing mode or to the window of unstable frequencies.
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Figure 10. Dispersion relations for the full model including logistic growth and competition for space. This figure is very similar in its trend to figure 5c. The most
notable difference is that there is no longer a zero eigenvalue at k = 0 corresponding to conservation of mass.
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þs0s0ðp0Þŵs . 0. For instabilities to occur the right-hand side
must be therefore also be positive. The factors ðs0ðp0Þŵs � a1Þ
and ŵ p1 must at least have the same sign or else they will be
negative and this condition will not hold.

If an unstable eigenvalue, λ, occurs, then its correspond-
ing eigenvector will be

lþ ðf þ gs0Þ
ðf þ gs0Þðs0ðp0ÞŵsðkÞ � a1Þ

� �
: ðC 12Þ

As λ > 0 and ( f + gs0) > 0, this vector can only be out-of-phase
if ðs0ðp0ÞŵsðkÞ � a1Þ , 0. This occurs when there is sufficient
competition (a1 . s0ðp0ÞŵsðkÞÞ.

As ŵ p1ðkÞ must have the same sign as ðs0ðp0ÞŵsðkÞ � a1Þ
for patterning to occur at all, we must have ŵ p1ðkÞ , 0 as
well for out-of-phase spatial instability.

C.3. Analysis of the effect of logistic growth and competition on
the stability matrix

In this section, we show that logistic growth will tend to be
stabilizing for smaller frequencies (longer wavelengths) but
destabilizing for larger frequencies if there is sufficient com-
petition. The Jacobian of the full model with competition
and logistic growth from equation (7.4) is

Jðp0; s0; kÞ

¼

�Ds0ð1� s0Þð1� ŵp2ðkÞÞ �
rp0
c

Dp0ð1� ŵp2ðkÞÞ:
ðð1� s0Þŵp1ðkÞ � s0Þ
� ra2p0

c

ð f þ gs0Þðs0ðp0ÞŵsðkÞ �a1Þ �ð f þ gs0Þ

2
6666664

3
7777775

ðC 13Þ
Example dispersion relations can be seen in figure 10. As

in previous cases, the trace will still be negative. Assuming p0,
s0 remains unchanged (using equation (7.3)),

detðJÞ ¼ detðJÞjr¼0 þ
rp0ðf þ gs0Þ

c
(1þ a2ðs0ðp0Þŵs � a1Þ):

ðC 14Þ
If the determinant increases such that it becomes positive for
some frequency k (and the trace is negative), then that
frequency will become a stable mode and vice versa; if the
determinant becomes negative for some frequency, then
that mode will become unstable. The determinant detðJÞ
will increase if 1þ a2ðs0ðp0Þŵs � a1Þ . 0, which will occur
for larger ŵsðkÞ which occurs at smaller frequencies. Notably,
the 0 frequency homogeneous solution will no longer give a
zero eigenvalue but will be stable at the steady state (as
shown in figure 10). This will also prevent the metastability
that we saw in previous model variants.

Conversely, the determinant will decrease for some wave-
lengths if 1− α1α2 < 0; that is if there is sufficient competition.
This will occur for smaller values of ŵsðkÞ which are shorter
wavelength, typically out of phase, perturbations.
Appendix D. Initial conditions for figure 5
In order to generate figure 5a,b, we initiate a two ‘bump’ and
a three ‘bump’ solution with noise as can be seen in figure 11.
To initialize these simulations, we begin with rectangular
bumps of length 40 that give total average population
16 000 pe km�2. The two ‘bump’ solution has a peak of
40 000 pe km�2 and the three bump has 26 000 pe km�2.
These are seeded with 100 cosine perturbations of modes 11
to 111, each of random size up to ±2% of the peak. If
needed, the total population is adjusted to ensure the average
is still 16 000 pe km�2.
Appendix E. Fitting a logistic growth model
using London data
In this section, we wish to estimate the intrinsic growth rate,
r, in equation (7.1). To do this, we fit a simple, one dimen-
sional, logistic growth model of the form dp/dt =
rp(1− ( p/c)) and fit for r, c and the initial condition p(1801).
This is done using a process of minimizing the sum
of squares between the model output and the historic
data. These data are London and London borough census
data from 1801 to 2011 [41]. The results for London can be
seen in figure 12. The values for Inner, Outer and Greater
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Figure 11. Initial conditions that generated figure 5a,b, respectively. These two initial conditions both have the same total population. However, including com-
petition in the model, one simulation gives in phase patterns only whereas the other gives secondary out-of-phase patterning.
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London give r ¼ 0:056, 0:051 and 0:040 respectively. There-
fore, r = 0.05 seems a reasonable estimate for the intrinsic
growth rate.
Appendix F. Varying parameters temporally
In this paper, we have made the simplifying assumption that
the parameters used are static over time. This assumption is
necessary in order to make the mathematical analysis of the
steady states possible. However, we acknowledge that there
will have been many transitions between regimes over time,
especially with the advancement of technology. For example,
Borchert [42] identifies five epochs from sail-wagons (ca 1800)
to the modern technological epoch.
The model presented here has the potential to shed
further light on this in future work. For example, we show
in figure 7 a simulation in which the β parameters vary line-
arly over time, starting below and ending above their default
values in table 1

bp1 ¼ 0:5þ 0:006t; bs ¼ 1þ 0:038t
and bp2 ¼ 5þ 0:08t: ðF 1Þ

For simplicity, we assume there is no competition or
growth; that is r = ap = α1 = 0. This simulation shows how
increasing typical travel distances over time leads to exagger-
ated agglomeration. Of course, growth, competition and
other factors may complicate this further but this brief
example shows something of the effect of socio-technological
developments.
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Figure 12. Graphs showing population data for London with the logistic growth model fitted.
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