Fundamentals of Additive Manufacturing (autumn)
20 credits
This is a two week intensive module. This module examines both the basic implementation and theory of additive manufacturing, its translation into modern additive manufacturing techniques that are currently being researched and exploited within both academia and industry which result in net shape parts.
The content of the module is as follows:
- Introduction and individual coursework setting
- Design and design systems for AM
- Integration aspects with 3D scanning
- Overview of the 7 ASTM AM processes
- Material Jetting
- Powder Bed Fusion
- Vat Polymerisation
- Material Extrusion
- Direct Energy Deposition
- Sheet Lamination
- Binder Jetting
- Commercial 3D Printing
- Experimental Systems for AM
- Materials Requirements for 3D Printing
- InkJet materials
- Software and systems
- Impact of AM and 3D Printing
- Case Studies of AM in Industry
- The Future of AM and 3D Printing
The module will be mainly delivered in an intensive week(s) of lectures and laboratory classes.
Group Grand Challenge (autumn)
40 credits
The module aims to provide the opportunity to work in small, multidisciplinary teams to address a grand challenge in the area of additive manufacturing.
Although some variation in content is expected due to the varying nature of the possible challenges, it is expected that a common project will take the following form:
- Discussion of challenge with the tutor and setting of challenge brief
- Literature review and fact finding
- Definition of challenge brief and setting of aims, objectives, deliverables, methodology and time-plan
- Experimental/theoretical/computational work
- Analysis and interpretation of results
- Presentation of results
In many cases the project will take the form of a design and make project in which the stages of the project will include the evaluation of alternative design concepts, engineering analysis, prototyping, performance evaluation and improvement.
Masters Engineering Research and Communication (full year)
20 credits
This module develops professional and research skills including academic/technical writing, communication, critical literature reviewing, and project planning. The year-long nature of the module enables these developing skills to be applied to assessments in concurrent modules.
The module provides an important link to the PGT individual project by providing visits to research laboratories and time for specific project-relating training. Training in areas including statistics and data analysis, design of experiments and health and safety requirements and assessment will also be undertaken to equip students with the skills for their individual projects.
Advanced Topics in Additive Manufacturing (spring)
20 credits
The module will be based on a number of topics of interest in research in additive manufacturing, which may change over time as the module is refreshed to reflect the current state of the art. Example topics to be included in the module programme include materials development for AM, in-situ and post process characterisation of materials and structures and computational methods for the modelling, design and optimisation of AM processes and parts.
Advanced Characterisation and Metrology (spring)
10 credits
This is a one-week intensive module. The course provides cutting-edge lectures on a range of metrology topics for dimensional measurement of additive structures. Topics include introductory and advanced metrology lectures, and hands-on training in the use of measuring instruments.
The lectures are designed to give a feel for the subject and why it is important, but do not cover difficult mathematical detail. The lectures will cover the following topics: Basics of measurement, terminology, SI units, uncertainty analysis, tolerance principles, length measurement, form measurement, coordinate measurement, x-ray computed tomography and surface texture measurement.
The module will be mainly delivered in an intensive week of lectures and laboratory classes.
Individual Postgraduate Project for Additive Manufacturing and 3D Printing MSc (summer)
60 credits
This course includes a 60 credit research project, which is completed over the summer. The project area is flexible and will be supervised by a member of the Centre for Additive Manufacturing.
Previous research projects have included:
- Exploring the compatibility between conductive metals processed by Metaljet and dielectric substrates
- Development of water soluble biocompatible inks to print vascularised tissues
- Multi-material printing of biodegradable polymers for manufacturing dual drug delivery devices for chronic diseases
Advanced Technology Review (spring)
10 credits
This module will initially look at new technology development and introduction focusing on innovation, funding and decision-making processes. The rest of the module will cover an engineering topic dealing with new and/or rapidly developing technologies with important applications.
Coverage of each subject will typically include:
- a review of background and context, importance, and pressures driving development
- engineering principles, current research and development objectives and progress being made
- case study illustration(s)
- analysis of prospects, technology transfer, market applications, challenges and imperatives
Topics are selected each year to reflect current developments and issues; one or more topics may be changed each time the module is run. These topics will be associated with activities in major segments of manufacturing or service industries or of generic technologies. In each case, emphasis will be placed on review and analysis.
Materials Design Against Failure (spring)
10 credits
This module focuses on understanding and manipulating of material's microstructure to avoid failure. It addresses the main areas of mechanical failure using specific material system examples to illustrate how materials design is used to develop better materials for particular applications.
The four areas are:
- Design for strength – metallic alloys, ceramics
- Design for toughness – metallic alloys (including discussion of strength/toughness balance for Al alloys)
- Design for creep resistance - metallic alloys
- Design for fatigue resistance
Advanced Energy and Electronic Materials (spring)
10 credits
This module provides students with an in-depth understanding of current trends in materials development, characterisation, assembly and manufacturing for energy and electronics sectors for a sustainable and net-zero world.
Topics typically include:
- Electronic and ionic conductors for fuel cells and electrolysers, lithium-ion batteries, supercapacitors
- Dielectric, piezoelectric, ferroelectric and semiconducting materials
- Solar cell materials for renewable energy generation
- Packaging materials and joining approaches in power electronics
- Methods to evaluate materials properties and device performance
- Manufacturing solutions: silicon-based technologies and additive manufacturing of flexible and wearable devices