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To Anne



(i)

'. « . God, in the beginning form'd Matter in solid,

massy, hard, impenetrable, moveable particles . . '

Newton, Opticks, 1717, Query 31.



(iii)

Abstract
Hydrodynamic shape functions for modelling biological macromoleculss
in solution in terms of an ellipsoid of revolution model are revieswed.
Several new, hitherto unpublished shape functions whose experimental
determination does not require knowledge of the swollen molecular volume
in solution, are given. The limitations and inadequacies of this model
are explained. The viscosity increment v for a dilute dispersion of tri-
axial ellipsoids of semi-axes a> b> c, under dominant Brownian motion is
derived and an explicit expression in terms of a, b and c is given.
Knowledge of the viscosity increment alone is not sufficient to uniquely
determine the axial ratios (a/b, b/c) because (i) in order to determine
v, knowledge of the swollen volume in solution is required and (ii) a
particular value for v has a line solution of possible values for (a/b,
Q/c). (i) is dealt with by combining:-v with the tri-axial frictional
ratio function P to give the tri-axial R function and (ii) by combining
graphically the R line solution with 8, and §_ swelling independent line
solutions. The experimental determination of 6+ and §_ requires the
;esolution of a 2-term electric birefringence decay into its component
relaxation times; current data analysis techniques are however not
satisfactory for resolving close relaxation times (as for globular
proteins) with the current experimental precision. It is however shown by
exhaustive computer simulation that using a new R-constrained non-
linear least squares iterative analysis this is now possible. It is
thus concluded that the general tri-axial ellipsoid as a model for the
gross conformation of biological macromolecules in solution can now be

employed.
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1.

Preface

There are two basic approaches for determining the gross
conformation of a biological macromolecule in soclution. One is to assume
a structure (generally an array of spheres of varying sizes) and then
calculate its hydrodynamic properties, for example the intrinsic
viscosity, sedimentation coefficient, translational diffusion coefficient,
and then see houw much these predicted properties diffesr from the
experimentally determined properties for the unknown structure. The
model is then successively changed or 'refined! until the predicted
properties converge to agree with the actual properties. This method has
been developed by Bloomfield, Garcia de la Torre and co-workers
(Bloomfield et al, 1967, Garcia de la Torre & Bloomfield, 1377a,b,c, 1978,
Wilson & Bloomfiseld, 1979a,b, Garcia Bernal & Garcia de la Torre, 1980).
There is howsver a serious drawback in that the final calculated structure:
may not be the only one which gives these properties.

The alternative approach is to calculate the structure directly from
the known hydrodynamic properties. Some general model must of course be
assumed, but although the models available from this approach are less
precise (the most general before the commencement of this study being an
ellipsoid with two equal axes) it does not suffser from the unigueness
problem. This approach was first developed by Stokes (1851, 1880) in
terms of a simple spherical model calculated from the translational
frictional property and the rotational frictional property and again for
a spherical model by Einstein (1906 - with a correction in 1911) from the
viscosity property. Although the current state of theoretical, experimental
and data analysis techniques allows use of the '2 equal axes' ellipsoid

("ellipsoid of revolution"), it is clear from a simple perusal of



2.

crystallographic moadels that for many biological structures this model
is a very poor approximation to the true structure.

The aim of this thesis is thus twofold: the first is to rsview all
the current ellipsoid of revolution shape functions (in which some Neul,
hitherto unpublished functions are given) and the second is to develop the
current theoretical and data analysis techniques to show that with current
experimental precision the restriction of two equal axes on the ellipsoid
model can now, in principle at least, be dispensed with to allow use of
the more genseral "tri-axial sellipsoid" model.

I would like to take this opportunity to express my deepest
~ gratitude to Dr. A.J. Rowe for his expert guidance and supervision during
the course of this study.

I would also like to thank the following people for their hslp and
advice on specific parts of this study: Dr. M.D. Dampier of the Mathematics .
Department for helping me derive the viscosity increment for tri-axial
ellipsoids, Dr. K. Brodlie of the Computing Advisory Services for helping
me with the programming, particularly in the early stages; Drs. J. Rallison
& J. Hinch from Cambridge for helpful discussions on suspension rheology;
Professor B, Jennings and Drs. V. Morris and A. Foweracker of Brunel
University, Dr. Houssier of Liege University and Dr. J. Jost of the Union
0il Company, California for discussions and communications on electric
birefringence, Dr. R. Dale of the Patterson Laboratories on the limitations
of fluorescence depolarization, and fir. A. Pancholi of this laboratory for
permission to use his viscosity data for hemoglobin.

I am grateful to the Science Research Council for a Research
Studentship and also Fisons Pharmaceuticals Limited for financial assistance

during this study.
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I would like to thank my friends and colleagues in this Department
for making my stay hers an enjoyable one, and finally my Mother for her

great patience whilst typing this manuscript.



CHAPTER 1

The Mass, Size and Shape of Macromolecules in
Solution: The Ellipsoid of Revolution Model




1.1. Macromolecular Structure in Solution

The concept of a unique structure for a biological macromoleculs
in solution and in crystallized form has only relatively recently been
established beyond dispute. Prior to the work of Svedberg the view was
commonly taken (Sorensen, 1930) that proteins and other macromolecules
exist in solution not as unique structures but as dissociable complexss
containing possibly several components, that the equilibrium state was
dependent on circumstances (for example the composition of the solution)
and any components precipitated are not necessarily to be identified with
those occurring in solution. Researchers were consequently surprised at
the ultracentrifuge results of Svedberg and his co-workers (Svedberg &
Pedersen, 1940) which strongly suggested the molecular homogeneity of
many protein systems. Thus, in striking contrast to the polydispersity
of many polymer systems (such as carbohydrates, rubber or polystyrene)
it was deduced that carefully prepared protein solutions contain one, or
at the most a few, different molecular species. This deduction was
derived mainly from the observation that boundary spreading observed in
the sedimentation of protein solutions could be identified with
separately measured translational diffusion coefficients. Bresler and
Talmud (1944) suggested however that a monodisperse protein really
contains a distribution of molecular weights with a sharply defined
maximum. This surmise is, on the other hand, strongly opposed by the
immunological properties of proteins (Alexander & Johnson, 1949)
together with the overwhelming evidence now available from protein
crystallography (Kendrew et al, 1958, Perutz et al, 1960, Blake et al,
1965, Feldman, 1976) which support the idea of discrete individual

structures.



X-ray crystallography is by far the most accurate method for
determining these structures. Unfortunately this technique is also the
most laborious, requiring several researchers working for a period of
months to determine the structure of a single globular protein. The
calculated structures are also of the 'fossilized' form of the
macromolecule which may not necessarily be the same in solution. There
are many techniques available, such as nuclear magnetic resonance,
electron spin resonance, fluorescence and other spectroscopic technigues
which can give much detailed information about the dynamic properties of
localized regions of macromolecules in solution (for example, the active
sites of enzymes are being extensively studied). These techniques
cannot however give informatidn as to the overall macromolecular mass,
size and shape. For this one needs to consider the hydrodynamic
properties of solutions of the macromelecule (although scattering
phenomena can also give useful information), which allows determination
of the molecular weight, simple 'hydrodynamically equivalent'
mathematical models for the structure and also the size (including the

swelling due to solvent association) of the macromolecule.

1.1.1. Mass

The 'inertial mass' of a body can be defined as the quantity of
matter in it, or as the ratio of the force applied to its acceleration
(Newton's 2nd Law of Motion). For a macromolecule we conveniently
express the mass by the 'Molecular Weight' (Nr) which is defined as the
ratio of the mass of the macromolecule to that of one sixteenth of an
oxygen 016 atom, and is expressed in grams.

The mass of fluid displaced by a macromolecule in a solution will



equal the product of the volume displaced and the density of the solution

(MrG/NA)po, where Mr is the molecular weight, N  Avogadro's number, DO the

A
solution density and v the partial specific volume of the macromolecule,
i.e. the volume increase when unit mass (generally one gram) of solute is

added to an infinite volume of the solvent at constant temperature and

pressurs

- _ E‘l
-

The 'Archimedean mass' (i.e. the buoyant mass) of a macromolecule
(Van Holde, 1971) in solution will equal the true mass minus the mass of

the fluid displaced:

H

NA 0 NA

=
.

M, [M _ M )

= = - vie, =5 A -voe))
(2)

The molecular weight of a macromolecular solute can be measured from many
methods, for example sedimentation velocity and translational diffusion,
osmosis, light or x-ray scattering, or most precisely from a sequence
analysis. A recent review of these methods is given by Rowe (1978).
The partial specific volume can be found sither from a concentration
determination followed by a densimetric analysis (Kratky et al, 1969,
1973), or for a protein, from Traube's rule (Rowse, 1978). This ruls may

possibly also be applicable to nucleic acids (Pearce st al, 1975).

1.1.2. Size
The size of a rigid macromolecule in solution will differ from that
in the anhydrous states because of associated solvent. The hydrodynamic

or swollen specific volume Gs’ will now comprise of the partial specific



volume, v, the bound solvent that adheres to the hydruphilic particle
surface, and 'entrained' solvent which may be trapped in the various
cavities and indentations in the macromolecule (Figure 1). The ratio
GS/ Vv is known as the 'swelling' of the macromolecule and is equal

to unity if the macromolecule is anhydrous and compact in solution.

The swollen specific volume can be simply relatsd to the "effective"
hydrodynamic volume UB i.e. the swollen volume of a single macromoleculs

in a homogeneous solution:

v M

A | (3)
1.1.3. Shape

Owing to the difficulties in developing theoretical relationships
between the shape of a macromolecule and experimentally measurable
parametsrs, only rather simple 'hydrodynamically equivalent' models are
currently availabls, the boundaries of which can be described by a simple
mathematical equation; these are (Figure 2) rods, discs and ellipsoids
of revolution (Tanford, 1961).

An ellipsoid of revolution is formed by rotating an ellipse either
about the major axis (prolate ellipsoid) or about the minor axis (oblate
ellipsoid) and thus has the necessary restriction that two of the three axes
must be equal. In the limit of large axial ratio, a prolats ellipsoid
(2 minor axes, 1 major) becomes a goaod approximation to a rod whilst an
oblate ellipsoid (2 ma jor axaé, 1 minor) becomes a good approximation to
a disc. Consequently, physical biochemists have tended to use ths
ellipsoid of revolution model to determine the hydrodynamically equivalent
shape of a rigid macromolecule in solution.

It should be made clear at this stage that many macromolscules cannot

be modelled by any of these rigid structures as they have no preferred



structure in solution: these 'randomly coiled' macromolecules can only be
represented by probability configurations. Many other macromolscules have
a well defined rigid structure but cannot be reasonably modelled, judging
from the x-ray models at lsast, by any ellipsoid. The L-shaped Transfer

RNA molecule is an outstanding example (Kim, 1974).

1.2. The Hydrodynamic Properties of a Macromolecular Soclution

The hydrodynamic properties of a macromolecular solution, which are
used to determine these structurss, can be conveniently divided into three
broad classes:

(i) The viscosity property, which concerns the effect of the dissolved
macromolecule on the bulk motion of the fluid when a shear gradient is
applied.

(ii) The translational frictional property, which concerns the movement

aof the: macromolecule through its solution when some form of external force
is applied. This can be a centrifugal field in a sedimentation experiment
or a concentration gradient (i.e. a gradient of chemical potential) in a
translational diffusion experiment.

(iii) The rotational frictional property, which concerns the disorienting
effect on the macromolecule by the local Brownian motion of the surrounding

solvent molecules.

1.3. The Viscosity Property of a Macromolecular Solution

The viscosity of a fluid is a measure of its resistance to flow and may
*
be simply defined for a simple shearing flow (Figure 3) in terms of the

shearing stress ¢ and the shear rate G:

g = nG (4)

* For the equations describing a more general flow see Batchelor (1967).



where n is known as the viscosity coefficient. Ifn is a proportionality
constant independent of the shear rate the fluid is said to be Newtonian.
Howsver, if the constituent moleculss show preferred orientations, this
will alter the retarding forces between adjacent fluid elements and hencse
the internal friction or viscosity coefficient. This non-Newtonian
effect will occur in solutions containing highlyesymmetric or easily
deformable moleculss and at high shear rates (Batchelar, 1967); this forms
the basis of flow birefringence experiments (see 1.5.3). For characterizing
the macromolecule in solution we can set the conditions (i.e. very low shear
rates) so that the Newtonian condition prevails, whereas the chemical engineer
would be more intersested in the general flow propertiss.

Using equation (4) we can simply relate the viscosity coefficient to
the energy dissipation during flow. Writing ¢ as a tangential force per unit

area (F/A) and the shear rate as the velocity gradient ( (dx/dt)/Ay ):

Multiplying both sides by G:

F dx _ 2
AAydt

Since Aldy is the volume of the slement under consideration, then
&> =
' (5)
where <dw/dt> is the mean energy dissipated per unit volume.
The effect of dissolved or suspended macromolecules which are assumed
to occupy a volume ¢ of fluid, is to disturb the streamlines of the
fluid motion and to reduce the volume of the fluid in which the same

overall deformation takes placs. Thus the intsrnal friction, the viscosity
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coefficient and hence the energy dissipated is increased. This increass

can be represented by:

dw _ L2 2
EE':> =G (n-n)=G n v¢ (5)

inc
where n is the viscosity coefficient of the solution and N, that of the
solvent. Rewriting:
n=ng (1 + vo) (7)
Here v is defined as the viscosity increment and is a function of the

shape of the particle. Again, rewriting equation (7):

n
— -1=n vo

U, sp

where nsp is the specific viscosity. This equation only applies to an

infinitely dilute solution in which no solute-solute interactions occur.

For finite concentrations:

= 2 3
= + + *uw
nsp v vid Voo

or, replacing ¢ by ch,whera c is the concentration and GS the swollen

specific volume:

n
& Bl g g & +\)n32
Ned S L zvs € F s wmm
where r}ad is the reduced spescific viscosity. As the concentration

approaches zsro, N tends to a limiting value, known as the intrinsic

red

viscosity, [n] . This can therefore be found by extrapolating a plot of

Tkad versus concentration to infinite dilutinn, and, if the swollen

specific volume, Gs is known (section 1.1.2.), v can also be found:

5 - In] _ {n]Mr
v, Vela (8)
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An approximate value for V can be estimated for 'globular' proteins by
using the partial specific volume v and assuming that GS/ v is ~1.4

for globular proteins. A full review of the experimental techniques for
determining the intrinsic viscosity, [n] is given by Yang (1961).

Einstein (1906, 1911) was the first to determine an explicit value
for v for a specific particle shape, i.e. a sphere, by solving the
equations of motion for the flow using spherical harmonics. His
assumptions wers:

(i) the particles are large enough compared to the solvent molecules

so that the surrounding fluid can be regarded as a continuum and Euler's
(Batchelor, 1967) equations concerning the change of flow through specific
volume elements rather than the compli&ated Lagrange equations for

particle motion can be used,

(ii) the dimensions of the particles are however considered very much less
than the spatial variations in the veloecity flow field,

(iii) the flow rates are small enough so that sguared terms concerning the
velocity (and hence normal stress effects) can be neglected and that the
inertia or mass forces can be neglected.

Using these assumptions and considering the increase in the average
dissipation of energy per unit volume, he found that v = 2.5, and was
independent of particle sizs. This result has been confirmed experimentally
for polystyrene latex spheres by Cheng & Schachman (1955).

Jeffrey (1922) attempted to extend this theory to find v as a
function of axial ratio for ellipsoids of revolution, using ellipsoidal
harmonics to solve the equations for the fluid flow. Owing to the non-
isotropic nature of ellipsoids, the hydrodynamic torgues on the sellipsoids

were shown to have two effects:
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(a) the first effect tends to make the particle rotate on average with

the local undisturbed angular velocity of the fluid,

(b) the second effect tends to orient the minor axis parallel to the flow
for prolate ellipsoids and perpindicular to the flow for oblate ellipsoids.
As a result, the fluid is no longesr isotropic and an energy dissipation
analysis fails to give a unique value for the axial ratio for a given value
of v (Brenner, 1972a). However, if the particles are sufficiently

small the randomizing effect of the Brownian motion of the surreunding
solvent molecules counteracts the orientational tendancy of the
hydrodynamic torque (b) so that the particles are randomly oriented (Simha,
1940) and rotate on average with the local angular velocity of the fluid.
The solution is then statistically isotropic, allowing an energy
dissipation analysis to be used to obtain an unambiguous solution for Vv

in terms of the axial ratio for prolate and oblate ellipsoids of revolution.
Simha (1940) was thus able to obtain a formula which has been shown to give

good agreement with experiment (Mehl, Oncley & Simha, 1940):

n v, 2 2 1"

1 200 7 2 BO (@™ + b7) + ZBO

v o= + & —
5

ab® | 15p2q 15 v I5H%
Q o] [0}

8,'[2a%b°8 " + (a° + b8 "

(9)
where a,b,b are the thres semi-axes of the ellipsoid (b>a for oblate and
b<a for prolats), and the aé ete. which depend on a and b are elliptic
integrals given by Jeffrey (1922) (Appendix I). This relation could be
solved numerically for both cases and a table of values for v as a

function of axial ratio was given by Mehl, Oncley & Simha (1940).
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The function is plotted in Figure 4. In the limit of large axial ratio

p (=b/a)

1/p? . 1/p? 14
Vo~ TS0m(2/p) 37D T SUa(2/p)-i/z) T 15 (Prolate) (18
— ) tan'l(p) (oblate)

15

(10b)

These formulae agree with the independent derivations of Kuhn & Kuhn
(1945) and Kirkwood (1967).

Simha apparently did not assume that the particles were On average
rotating with the local angular velocity of the fluid but with zero
angular velocity. This objection was raised by Saito (1951) who however
obtained exactly the same result (equation 9) despite assuming particles
on average rotating with the same local angular velocity of the fluid.
He suggested that Simha "probably made some srror in his calculation™
without actually finding it. We will show in the next Chapter that Simha
had apparently arrived at the correct result by making the wrong assumption

and then missing out a whole series of terms in his calculation.

1.4. The Translational Frictional Property of Macromolecular Solutes

The sase with which a macromolectle moves through its solution under
the influence of an applied external force field will depend on its shape
and size. The coefficient generally used to describe this ease is the
frictional coefficient, f, defined as the ratio of the frictional force
to the terminal velocity of the particle. Stokes (1851) using spherical
_harmonics again and assumptions similar to Einstein's (section 1.3)

derived the well-known relation between the frictional coefficient f and
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the radius R of a spherical particle:

f = 61TT]OR (11)

whers na is the viscosity of the solvent. Perrin (1936) and independently
Herzog, Illig and Kudar (1934) extended Stokes equation to cover the case

of general ellipsoidal particles:

£ -
£

0 Y3 dA 1
(ahc) J TGZn) (b2+h) (C2+n) 12 (12)
0
wherse FD is the corresponding coefficient for a sphere of the same volume:

i3 ¥

f0 = Gﬂno(abC) = Gﬂno g
(13)

UB is the molecular swollen volume, defined in section 1.1.2. The integral

in equation (12) is elliptic and could only be solved for the special case

of ellipsoids of revolution. For prolate ellipsoids ( p = (b/a)< 1):

2
£ ___(A-p) ;
£ p%tan-l % -1)° (14a)
and for oblate ellipsoids ( p = (b/a) >1)
2

.G -n

A ]_:)%(31:2111—1 (p?-1)°2
(14b)

and can easily be plotted as a function of axial ratio (Figure 5). The
translational frictional ratio f/fo can be measured experimentally either
from a translational diffusion experiment, where ths driving force is a
concentration gradient, or from ultracentrifugation, where the driving

force is a centrifugal field.
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1.4.1. Translational Diffusion

The translational diffusion coefficient, D, is related to the
frictional coefficient, f, at a particular particle concentration, c,

by the relation:

D = %; { 1l +c¢c Biny }

c ac

(15)

(van Holde, 1971), where Y is the 'activity coefficient', a measure of the
concentration gradisnt. Extrapolating Dc to infinite dilution gives the

Einstein relation (Einstein 1905, Tanford, 1961):

£ (16)

By assuming the concentration gradient to be in one direction only, and
applying Fick's laws (Tanford, 1961) for a two-component system, a simple
relation for finding D experimentally can be derived, in terms of the area
under, A, and the maximum height of, H, a concentration gradient (dc/dx)

versus distance (x) curve:

Thus a plot of (A/H)2 versus time, t, in a 'free diffusion of a sharp
boundary experiment' will give DC from the gradient (Tanford, 1961, van
Holde, 1971). Dc can be extrapolated to infinite dilution after repsating
the procedure for several solute concentrations. Unfortunately, few labor-
atories have the apparatus required for an accurate determination of D using
this method. A fast and accurate method for determining diffusion coeffic-
ients has been developed using quasi-elastic laser light scattering (Chu,
1974, Cummins & Pike, 1973, Berne & Pecora, 1974); the fluctuations of solute

particles from the equilibrium state are a function of the diffusion
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coefficients and with adequate instrumentation for signal analysis can be
time-resolved.
From equation (16), the frictional ratio can be found from the

translational diffusion coefficient using the relation

cﬂoc

(17)
where Dn is the translational diffusion coefficient for a sphere of the

same volume and molecular weight:

1A
Do = f = 6mn 3V
o] o] e

KT KT [am}

(18)

1.4.2. Sedimentation Velocity

In a sedimentation velocity experiment, using an analytical
ultracentrifuge (van Holde, 1971), the macromoleculss quickly attain the

terminal velocity, whence

M

L (1-7vo0)ulr=¢£3
NA (1 -v po)w r=f T

where Po is the solution density, r the distance from the centre of
rotation of the solution/solvent boundary, w the speed of rotation and

Nr(1 -V %)/NA the'buoyant mass'! defined in section 1.1.1. Rearranging:

Mr(I - po) g ardde
Ny f wlr | ¢

(19)
where S, is the sedimentation coefficient at a particular solute
concentration. In a sedimentation velocity experiment the movement of
the boundary between solution and solvent is monitored as a function of

time using the property of change of refractive index with change in
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concentration, hence optical techniques such as scanning Schlieren optics
or ultra-violet absorption can be used (Lloyd, 1974). If we rearrange

and integrate equation (19) we find that

¥ = 1 Afnr
¢ w? At

thus by plotting loger versus t and knowing the angular velocityuw , s, can
be found from the gradient. The sedimentation cosfficient 8. is a function
of solute concentration, thus is normally extrapolated to infinite dilution
to give the sedimentation coefficient, s, which is characteristic of any
macromolecular solute. From equation (19) it can be seen that the

frictional ratio P/?O will be given by

S

where S, is the sedimentation coefficient for a compact sphere of the same

molecular weight and volume. From equations (19) and (13):

- - 14
. . M.l - ¥ Pyl _ M1 - vo ) [47,}
) Ny f0 Ny 6ﬂno 3Ve (20a)
and thus the frictional ratio can be found, provided s, Nr, v, Po? Mg
and the swollen molecular volums, Ua ars known:
- o 14
£ - Mr(1 = po) [41T]‘
fo NA 6ﬂn0 S SVe
(20b)

1.5. The Rotational Frictional Property of Macromolecular Solutes

The ability of a macromolecule to rotate under the influence of the
local Brownian motion of the neighbouring solvent molecules will depend on

its size and shape. By analogy with the translational frictional
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coefficient, we can define, fur.rutation about a specific particle axis,

a rotational frictional coefficient, Ci, as the torque which must be
applied to cause the particle to rotate with unit angular velocity. For

a general ellipsoidal particle there will be three rotational frictional
coefficients corresponding to rotation about each of the three axes; for
an ellipsoid of revolution there will be two, and for a spherical particls,
one. Each rotational frictional cosefficeint can be related to a

rotational diffusion constant by analogy with the Einstein relation (1905)

(equation 16):
8, = — (21)

where Bi is defined as the ratio of the mean squared angular displacement
of the axis to the time elapsed (Tanford, 1961). In a typical rotational
frictional experiment an initial orientation of the macromolecule is
produced by some external field. If, for example, the macromolecules in

a solution are oriented with their "a" axis parallel to an orienting fisld
and the field is suddenly removed, the macromolecules will then relax due
to the Brownian motion and tend to assume a random configuration by
rotating about the b and c axes. We therefore conveniently define a

rotational relaxation time in terms of the rotational diffusifon constants

(ab, 8. about the b,c axes respectively) by

(22a)

There will be similar relations describing relaxation of the b and c axes:

(22b,c)
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By analogy with the translational frictional case, Stokss (1880)
using spherical harmonic solutions of the squations of motion with
the boundary condition that the fluid in contact with the particle rotates
with the same angular velocity (i.e. the 'no-slip' condition) derived an
equation linking the rotational frictional coefficient with its

radius, R:
- 3
L = 8wn0 R

(23)
Edwardes (1893) extended this equation to the case of general sllipsoidal
particles. After a correction for a numerical error (Perrin, 1934),

these are:

.- 161rn0 B2 & g2
= 7 p

a 3 b Bo L s
e Lo, c? + a?
= Z 7

b 3 c Yo +a G
) 16nn0 a2 4 B

e 3 c%y + a‘a

) ) _ (24)
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where again the GU etc. are elliptic integrals defined by Jeffrey (1922) -
see Appendix I. The expressions on the right hand side of equations (24)
are functions not only of shape but of volume as well; the corrassponding

rotational frictional ratios however, are not.

*a _ eo 2 b2 + c?
z =3 ° Z, Z
%o ea 3abc b s * BN
% % 2 c2 + a?
r 8 Zz. Z
By Gb 3abc ¢ Y, + 2%
Se_lo_ 2 _a?sp?
z ) 3abc a‘a_ + b4B
0 c o 0

(25)
where Cu (=8-nn0abc) & 80 (=kﬂ/co) are the corresponding coefficients
for spheres of the same volume, and can be found experimentally only

if the swollen molecular volume, UB is known:

Ly = 6n0 Ve ) 60 = kT/GnO Ve

(26a,b)
The corresponding rotational relaxation time ratios are:
a2
o) B 0
0 £+£]
3] )
o} o
%2
% &+E]
6 3]
| o o
o2
% P2,
5 B (27a)
| © 0

h = ” .
where 1/2 8 (27b)
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Unfortunately, as for the translational frictional coefficients, the
elliptic integrals could only be solved analytically for the special case
of ellipsoids of revolution of semi-axes a, b=c (Gans, 1928, Perrin, 1934).
Although numerically equivalent, Gans uses the less manageable
'eccentricity! (e =1 - h/é) rather than the axial ratio (p = b/é), hence

the equations of Perrin are generally used:
fa_ o 20 -9}
ea 3 (1 - p4S)

Sb_Co_2__@a-pY

= e— = e

° b (28a)

where

-1 !
$= (1 -p%)enl[l + (A-p2)°]1/p}
for a prolate ellipsoid (p<1), and
1

S=(p% - 1)72 tan™? [(p? - 1)%]

for an oblate ellipsoid (p>1).

The rotational diffusion ratio Bi/bu (i=a,b) can be related to experimental

parameters using equations (26b):

(28b)
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The corresponding rotational relaxation time ratios were also given by
Perrin (1934) but contained an error of sign invelving 5. The correct

result was given by Koenig (1975):

a _ % _ 20 - p4
o, 9, 3pZ5(2pY - 1]
% 2 a0 -p"
= = T o
° [Ty ) @SN+ 1)
) ) (29a)
o] o

These may be related to experimental parameters by combining equations

(26b, 27b):

i kT

0. 3V €5 (29b)
0 [0 I

All these functions (Ci/co =8./0 > Qi/Qc) are plotted as functions of
axial ratio in Figure 6. It should also be pointed out that, like the
translational functions the rotational diffusion coefficients and
relaxation times are functions of concentration (Riddiford & Jennings,
1967) and should be extrapolated to infinite dilution. The same is also
true for the harmonic mean relaxation time, the birefringence decay
constants and the fluoresesnce depolarisation relaxation times mentioned
below. The various experimental methods for determining all these shape

parameters will now be discussed.

1.5.1. Dielectric Dispersion

The capacity of a condenser filled with a solution of the macromolscule

is measured as a function of the applied sinusoidal voltage across it
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(Edsall, 1953). The 'dielectric increment' or increase in the dielsctric
constant, €, due to the presence of the solute is given by

c
0

C
Ae = g - EO-E;'- E; (30)
where €, is the dielectric constant of the solvent and C, CD and CU

are the capacities of respectively, the solution, solvent and vacuo.

At sufficiently small frequencies, the dipolar macromolecules can kesp

pacs with the alternating field, and the dielectric constant will remain

at its 'static' value. At sufficiently high fields, the rotation of the
macromoleculs about a particular axis will no longer follow the field and
its contribution, Ae_ to the dielsctric constant is that of a non-polar
substancéd (Dncley, 1940); thus over a certain critical rangs

characteristic of the size and shape of the macromolecule, the dielectric
constant decreases as the frequency increases. The frequency corresponding
to the mid-point of the dispersion curve is known as the 'critical
frequency'. For a general particle with three rotational relaxation times

0y Oy Og2 there will be three critical frequencies:

v, = ZﬂQa ' Vg, © Zﬂpb > ®, 2 ZWQC

(31)
For an ellipsoid of revolution thers will be two (since o = pc) or one,
either if the dipolar axis is parallel to the rotation axis of symmetry
or for a spherical particle. Typical dielectric dispersion curves for
ellipsoids of revolution of various axial ratios are shown in Figure 7
(from Oncley, 1940)

Even in the most favourable case, 9 = 450, resolution is poor for

axial ratios less than 9 (Squire, 1978). Application of this method is
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also limited by the fact that, due to electrode polarization, only
solutions of low ionic strength can be used, thus restricting the use

to proteins of high solubility.

1.5.2, Electric Birefringence

Polarized light incident on a solution of macromolecules oriented by
an elctric field will be split into perpéndicular components because the
rafractive index will be different for directions parallel and
perpgndicular to the electric dipole moment (Benoit, 1951). The solution
is then said to be birefringent and the amount of birefringencs will
depend on the nature and concentration of the macromolecules.

The decay due to Brownian motion of the birefringence when the field
is suddenly switched off is most interesting since this will be
independent of the electric properties of the macromolecules (apart from
the initial amplitude of the decay) but dependent on their size and
asymmetry, assuming the solution to be homogeneous. The solution must
be rendered homogeneous by, say, ultracentrifugation for removing larger
impurities, followed by gel filtration for fine purification. The number
of terms in the exponential decay will be dependent on the particle
asymmetry, assuming that the particles are small enough so that ths
Rayleigh - Gans - Debye scattering theory applies (i.e. particle dimensions
less than A/20). Ridgeway (1966, 1968) has shown that a general particle
will have two relaxation times, T+, T or two decay constants, 6+ (=1/ET+),

6 (=1/61):

(32)

where 4n is the birefringence, N is the number density of particles in
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suspension, n, the refractive index of the solvent and A, complicated

2
expressions depending on the initial particle orientations and their
dielectric and diffusion properties. Unfortunately, although Ridgeway
provided relationships linking 6, with the size and shape of general
tri-axial ellipsoids (see Chapters 3 and 4), anly.nna relaxation time

has been resolved from the experimental exponential decays for homogeneous
solutions. Thus the method has been restricted to ellipscids of revolution

(a_ = 0) for which Benoit (1951) had shown previously that, for an initial

birefringence L

(33)
assuming the electric dipole axis coincides with the rotational axis of

symmetry. For spherical particles thers would be no birefringencs.

1.5.3. Flow Birefringence

The aligning field can also be produced, if the macromolecules are
highly asymmetric, by large flow velocity gradients in the annular space
between two concentric cylinders, one rotary and one stationary (van Holde,
1971, Squire, 1978). The orientation of the macromolecules will again be
opposed by rotational Brownian motion, and for a constant shear rate, there
will be an equilibrium distribution of orientation states. Results for
early studies are discussed by Cerf and Scheraga (1952) and by Tanford
(1961). This method has the advantage that the steady state birefringence
can now be used to derive shape parameters, since this will be independent
of the electric properties of the macromolecule. However, the method has the

serious disadvantage in that relaxation experiments are virtually impossible,
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and also the use is restricted to highly asymmetric molecules (Sgquire, 1978).

1.5.4. Fluorescence Depolarization

This method applies to those macromolecules that possess a fluorescent
group or a chromophore (Cantor & Tao, 1971). If an slectron in a chromophore
is excited to a higher energy state by the absorption of radiation, then
instead of the ensrgy being dissipated non-radiatively in the form of heat
as it returns to the ground state, it loses only part of its energy as heat
as it returns to the lowest vibrational level of the excited state, but then
re-radiates the rest. This will necessarily be of lower energy (hence longer
wavelength) than the incident radiation. This phenomenon is called
fluorescence.

If the macromolecule is irradiated with polarized light, and if, in the
10-8 to 10-7 seconds it takes for the energy to be re-radiated the
macromolecule has changed its orientation due to Brownian motion, there will
be a net depolarization of the incident light. If the solution is
continuously irradiated then a steady state depolarization will be reached
depending on the ratio of the fluorescence decay time, t* to the harmonic
mean of the three rotational relaxation times (equations 27), Ty (Perrin,

1934):

(34)
P is the polarization (i.e. the ratio of the difference in intensities of
light polarized parallel and perpindicular to the incident beam to their sum),
PD is the intrinsic polarization of the fluorescence (the polarization that

would be observed if no rotation had occurred) and T, is defined by

h
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1 1 [1 1 1}
—...:g — e — e c—
"h €2 P O
(385)
for general ellipsoids, or for ellipsoids of revolution (gh = gc):

1 1 [1 2]

.73 o ol

h a9

The harmonic mean relaxation time ratio Th/ T, can thus be plotted as a
function of axial ratio (Figure 8), where By is the corresponding

coefficient for a sphere of the same molecular weight and volume:

. 37%>Ve
) kT
(36a)
Thus Th/ T_ can be related to experimental parameters by:
Eﬂ.= kTrh
T, 3nOVe
(36b)

Equation (34) is not particularly useful as it stands, since neither P,

nor T, are known. If T, is approximated by Th~Tg (i.e. = SnOUe/kT) then:

AERIaE B~

If measurements are then made in solutions of varying viscosity (for

example by adding glycerol) and/br temperature, (1/b -1/3) can be

plotted against T/nu, 1/'PD can be found from the intercept and hence T,
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from the gradient, assuming 1* can be found independently. A major
disadvantage of this method is that by adding glycerol or changing the
temperature the swelling due to solvation may be altered: also an
independent estimate for t* is required.

A more accurate method in principle is nanossecond fluorescence
depolarization decay (Cantor & Tao, 1971). Here the solution is
irradiated with polarized light pulses of very short duration (~1ns).
The anisotropy, A is measured by determining the intensity of emission

polarized parallel to (I,) and perpindicular to (I,) the incident pulse:

oL-u
- I“ * 2I_L

(38)
For a rigid spherical macromolecule, the anisotropy decay is described

by a single exponential term (Jablonski, 1961)

—t/ro
A(t) = Aoe
(39)
with Ty = My Ue/kT. For a rigid ellipsoid of revolution, Memming (1961)
and Wahl (1966) have shown that the aniseotropy is a sum of three

exponential terms:

-t/'l:1 ~t/12 —t/T3
A(t) = ae +a,e + agze
(40)
where
r = & o 1 i 5 1
1 66 ? 2 58, + 8 2 3 28, + 48

b b a b a (41)
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The fluorescence decay time ratios are plotted in Figure 9 where To is
the corresponding coefficient for a sphere of the same molecular weight

and volume:

2
. nove ) 4wn0ab
o kT 3kT

Thus the fluorescence anisotropy decay time ratios can be related to

experimental parameters by

Es kTT.
To = ;3:’; (j=1,2,3)

(42)

o, and hence the

The values of the component amplitudes Gpy Gpy Og

dominant relaxation time will depend on the angle between the transition
moment of the chromophore to the rotation axis of symmetry of the ellipsoid
of revolution. Unfortunately, resolution of a multi-term exponential decay
into its components is notoriously difficult (Jost, 1978), sven for
relaxation times differing in orders of magnitude; this is coupled to the
problem that the observed decay will be a convolution of the finite cut-off
time of the incident pulse, the fluorescence decay and the anisotropy decay.
There are also more serious problems:

(1) since the fluorescence itself decays within about 10ns, only molecules
with very short relaxation times can be investigated,

(ii) most macromolecules do not contain a chromophoric group such as
tryptophan; thus one must be introduced. This may significantly alter the

true conformation of the moleculse,
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(iii) even if the macromolecule contains tryptophan, the decay is not
perfectly exponential, due to interference between the side chain and
the indole ring,

(iv) rotation of the chromophore, or of a fragment of the macromolecule
to which the chromophore is attached, with respect to the rest of the
macromolecule may occur: Munro et al (1979) have given evidence for

internal rotation of the tryptophan residue in Staphylococcus aursus

nucleass B (I‘lr = 14,100) and Pseudomonas aeruginosa azurin (Mr = 14,000).

1.6. Scattering

Absorption and hence fluorescence phenomena can only occur when the
frequency of the exciting radiation is the same as or near to that of an
allowed transition frequency of the molecule. However, at other wave-
lengths elsctro-optic interaction can still occur; the electric vector
of the incident radiation polarizes the molecule by attracting the
nuclear mass and repelling the electron clouds. The frequency of
oscillation of the incident radiation is the same as that of the induced
oscillating dipole; however, the waves emitted are by Huyghens principle
spherical and hence the radiation is scattered in all directions.

The scattering by a solution of macromaolecules is mast rigorously
analysed by considering the local concentration fluctuaticns_of the
solution; however, if we consider the particle as small compared with the
wavelength of the incident light and the solution to be so dilute so that
each particle can be considered independently, relations can be derived
between particle shape in terms of the 'radius of gyration' (Tanford,
1961) and the scattering (van de Hulst, 1957). For small particles (<A/20)

interference effects between radiation scattered by different parts of the



3.

macromolecule can be neglected, and the following relation between

molecular weight, Mr and the scattering can be derived:

He 1
- =ﬁ_+ 2B.c
T

Ed
where ¢ is the particle concentration, H is the scattering constant
(@ X4, and the square of the refractive index increment, dn/dc),
B the second virial coefficient and T is a measure of the relative
scattering perpindicular to the incident beam (i.s. the fraction of light
scattered (van Holde, 1971)). Hence if Hﬁ/T is plotted versus
concentration, the molecular weight can in principle be determined from
the intercept. For large particles (d-l/?ﬂ) destructive interference
occurs between light scattered from different parts of the macromolsculs.
Light scattered in the forward direction cannot however be subject to
destructive interference. Unfortunately this cannot be viewed directly,
but if the scattering is studied over a range of angles it can be
extrapolated to the forward direction. This involves extrapolating to
zero-angle and to zero-concsntration using the so-called Zimm plot
(Zimm, 1948, Stacey, 1956, Tanford, 1961). The slope of the c=0 line
gives the radius of gyration of the particls, RG’ i.e. the mean extension
of mass from the centre of gravity. For a sphere of radius R, RG = /§7E1R,
and for a large rod of length L, RG = Q/VTE y thus light scattering can be
used to obtain information about conformation in solution, where particular
models for which R can be specified are applicable. Holtzsr and Lowsy
(1956) showed by this method that L = 1500 ﬂ if myosin could be reasonably
modelled by a long rod. Martin (1964) has shown that the radius of gyration
can be related to the axial ratio of the equivalent ellipsoid of

revolution provided that the swollen volume is known:
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24 .
R2 - av, 5p"3 + 4p'2’3
T 4m 15

(43a)
for a prolate ellipsoid and
»  [3v 7 [ up -
R = € p__*+2p
G 4 5
(43b)

for an oblate ellipsoid.
An explicit relation relating RG to axial ratio alone can be found by

'reducing' it

13 3
R . [4r) o | 52% v ap”
red sveu G 15
(44a)
for a prolate ellipsoid and
Y3 4 3
A =282
(Rg) [4w R oo [P+
red 3V G 5
(44b)
for an oblate ellipsoid.
This is plotted in Figure 10. Experimental determination of (RG)red

requires of course a knowledge of Ue'

The same analysis can be used for lassr light scattering as this
gives good time resolution for rapidly changing solutions (for example
aggregation of macromolecules, randomly coiled macromolecules). However

a major difficulty with all light scattering experiments is that all
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solutions, glasswars etc., must be dust free; removal, wi£huut damage to
the biological solute, poses great difficultiss. Due to diffraction
affects it is also difficult to measure scattering angles less than

about five degrees, thus a clear extrapolation to zerc angle may not be
possibls. Another major difficulty is that, since the resolving power
depends on (RG/A)Z, the method fails for macromolecules below about 100 g
(although Nr may still be found). Reducing the wavelength of the
incident radiation does not help (until down to the x-ray region) since
below 200nm most biological materials absorb very strongly. A method of
low angle x-ray scattering (LAXR) has alsﬁ been developed (Beeman st al,
1957). However, due to very strong diffraction and interference effects,
thé scattering is almost entirely confined to a very narrow wavelength
range. On the other hand, it is possible to collimate the x-ray beam much
better than a light beam, thus measursments can be made to a low enough
angle to a more reasonable extrapolation to zero angle.

Deductions about the size and shape of macromolecules from scattering
information is gensrally restricted howsver, since any simple interpretation
af the radius of gyration must assume that the macromolecule is homogeneous
(uniform electron density). If, therefore, ths particle contains fluid
filled cavitiss or indentations or a monolayer of bound solvent, the
dimensions of aﬁy assumed model calculated from the HG will be incorrect.
This problem does not apply to the determination of the hydrodynamic shape
parameters considered previously since these phsnomena do not depend on

interactions with or properties of the interior of the macromoleculss.

1.7. The Problem of Swelling dus to Solvation

In order to detsrmine from experimental data the ellipsoid



of revolution shape functions mentioned so far, a knowledge of the

swelling due to solvation (i.e. Ua) is required:

_ [TI] i} [U]Mr
Ll S
v A e
]
-7 113
£ M0 vey) gy
£ N,6mn_'s 3V |

e-

i kT .
- = 0. (i = a,b).
o 3n0Ve 1 "
T
SRl

0 To'e

.

j kT ;
- = T. (j=1,2,3)
%o nove J
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(8)

(20b)

(28b)

(29b)

(36b)

(42b)

(44)

The first significant attempt at dealing with this problem was due

to Oncley (1941) using a graphical analysis: If Ue is fixed then a single

value of the shape parameter being considered will correspond to a single

value of the axial ratio. If, howsver, Ua is assumed to have a range of

possible values, then a single value of the shape parameter will have a
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'line solution' of possible values of the axial ratio. This is shown in
Figures 11a and 11b for the viscosity increment and translational
frictional coefficient. However, if line solutions for two or mors

of the different shape parameters are compared, then in principle a
unigque value for the axial ratio and effective volume can be found from
the intersection. On the other hand, in practice these curves could only
be made to intersect by imposing large experimental errors on the data,
and in one case - pepsin - the curves do not cross at all (Figure 12).
Here Oncley uses as his abscissa the 'hydration factor' w, related to

the effective volume, ’u'9 by:

Wep (-0 =0 |AE T

A different approach would be to eliminate Ua simultaneously by
combining any two of the shaps parameters together. The effective volume
can then alsoc be found by back substitution into the equations. This
naturally assumes, as does the Oncley approach, that the axial ratio and
the swelling are the same for both types of experiment. Scheraga and
Mandelkern (1953) combined equations (8) and (20b) to produce a swelling-

independent function B (Figure 13):

13
B = NA vy%
(16200n2)7% /%,

(45a)

or in terms of experimental parameters, from

Ny s[nl ¥,

BB
Mr%@(l - \}pO)looV3

(45B)
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where [n] is in ml/gm. Scheraga and Mandelkern also combined equation (8)
with equations (28b) to produce swelling independent 84 and 8 functions

(Figure 14), although in their original paper, only db is given:

z 6. 6n 8, [n]M_

60 NA kT

I

1 .
1

(46)
(i=a,b)
Scheraga (1961) later combined (20b) with (28b) to produce swelling

independent u_, u_ functions (Figure 15) although again only u, was given:

i3 23 o

24 N, (kT) ~ n 25 n 43

ui=[_fo][C-J53w”35. A ~o___31r D [o
6. Mr(l - vpo) ]

(47)
(i=a,b)

Squire et al (1968) combined equation (20b) with (29b) to produce swelling

independent Yy and Yy functions:

3 -
el g e
i san2NkT  shn g,
(48)
(i=a,b)
Squire later (1970) combined (20b) with (36b) to gwe a swellcy

independent ¥ function (Figure 16)

s -
. [IEJ [_f_] :[41’”]0} Mr(_l - Vpo) _i_ 1/3
T fo “{ kT ) 6'rm0NAs T

(49)
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Plots of the Squire Y, and Yy parameters as functions of axial ratio are
given in Figure 16. A similar swelling independent function can be
obtained by combining the viscosity increment, equation (8) instead of

equation (20b) with (36b) (see Appendix II and Harding, 1980a):

L1}

[To] y S, (0™

(50)
(Figure 17). Also, by combining equation (8) instead of (20b) with
equation (29b), swelling independent € & functions are produced
(Figure 18):
L N
i es NA kT e;
(51)
(i=a, b)

By combining (8) with the fluorescence anisotropy relaxation times (42b)

three new functions, Kys Kys Ky aTe produced (Figure 19):

) EE__ no[n]Mr -
Ky =V 1. TN KT t. (j=1,2,3) (52)
J A J

Alternatively, combining equation (20b) with equation (42b)(Figure 20):
3 - = e S R S —
o ES

£) To m’(1-vp.)
fo T ibllU; szn?‘?}:'S" T;

(J = 1}_2/3]

£, =

J (53)

J
As far as the author is aware, the A, Ei’ Kj and Ej functions are new
and have not been published before. These functions are tabulated for
axial ratios betwsen 1 and 10 (Table 1).

Martin (1964) eliminated the requirement of knowledgs of the swollen

volume for scattering experiments by combining (44) simultaneously with



38.

gither the translational frictional function (Figure 21):

1
2

44 %7
- Ro n, D _ Rong Ngs 1 £y [5 ¥ dn®
= kT ~ - = T 6ér f 15
M.(1 - ve,)

(prolate ellipsoid)

|

. |
£ 5

y * ¥ 2p 73 :
= 6m

(oblate ellipsoid)

or the viscosity increment (Figure 22):

1

2
L = R _ 75 (sp™ s ap® 1
h I3 1A ™ 15 « 78
[n] "M, A

(prolate ellipsoid)

(oblate ellipsoid)

where p is the axial ratio defined in section 1.4.
The molecular covolume has also been given as a function of shape
and swollen volume by Nichol et al (1977) for prolate and

oblate ellipsoids

(54)
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where the ellipticity e is related to the axial ratio by

for prolate ellipsoids (b<a), and

= 2.
g€ = 1 - b2

for oblate ellipsoids (b>a). By 'reducing' U we obtain a function Ursd

in terms of shape alone:

~1
U 3 1 + sin "¢
gt - 2 e
red N V 3
A e 2 e(l-a2)2
1 - g2 1+¢
Pl mire] (55)

The covolume U can be found from a sedimentation eguilibrium experiment
in terms of the activity coefficient, as outlined by Nichol et al (1977)
although in order tﬁ determine Ured’ a knowledge of UB is still required.
Nichol et al (1977) however eliminated Ue by solving equation (55)
simultaneously with the translational frictional ratio (equation 20b) to
produce the swelling independent y function (not to be confused with the

Squire ¥ function)

3 Un3N, s

1b=

Ured F&%

. 3 - 3
2 " :
162n2 (£ Mo (1 - ve )

(56)
As seen from Figure 23, ¥ has the advantage that no prior decision has
to be made as to whether the macromolecule is better modelled either by
a prolate or oblate ellipsoid. Unfortunmately, for typical globular

macromolecules (small axial ratios), the parameter is still very
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sensitive to experimental error: this is clear from Nichol et al's

results for ovalbumin, whose axial ratio they found to be 2.5:1 with

a standard error of 3. This is largely due to the large number of

terms on the right hand side of equation (56), several of them cubed.
Ured can of course be combined with any of the equations (8), (20b),

(28b), (29b), (36b), (42b) to eliminate V,. For example, if (55) is

combined with the viscosity increment (8), a new swelling independent

function is produced (Figure 24) (Harding, 1980b):

v = [n]Mr
(57)

Values of the I function for various &xial ratios are given in Table 1.
The results for hemoglobin are in sxcellent agreement with these found

from x-ray crystallography (see Appendix III).

1.7.1. Hydrodynamic non-ideality: the R function

The viscosity, translational frictional and rotational parameters
considered so far are normally those extrapolated to zero concentration
in order to negate the effect of the net volume excluded by the particles
and soclute-solute interaction. However, the nature of the concentration
dependence of these parameters, particularly the sedimentation coefficient
"s" and the reduced spscific viscosity, ns c, has now been shown by Rowe
(1977) to give valuable information as to the conformation and swelling
in solution and also an estimate of the "goodness of fit" of an ellipsoid
for the macromolecule in solution.

The variation of s and nsp/b with concentration can be represented
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by regression parameters ks’ and knz

S. = s(l - ksc) (58)
SR o )k (59)
c n

where ks and l<n are, respectively, the sedimentation and viscosity
concentration regression coefficients. These approximate linear
equations are valid only for dilute solutions. A universal equation has
been derived by Rows (ses Appendix IV.) for all solute concentrations up

to ¢p’ the critical packing fraction:

e _ £, [n]

—_—=—= =1 - gc

s f nsp c
(60a)

where
ke - (26 - 1)(cv_/9)°
ge = E_ 2.0
ke - 2V§L+ 1

(60b)

where k=kS (sedimentation) or kzkn (viscosity). This provides a more
accurate method for extrapolating to infinite dilution to obtain [:n]i
and "s", and also for finding ks and kn s from a given set of data, by

minimi sing:
_ = 2
{wi[si f(ki’us’s’ci’¢P) ]}

(ui = weight) (61)
This procedure is unstable if ks, Us and s (or the corresponding viscosity
parameters) are all taken to be independent variables. Howevsr, if we

assume Us = ks/4 for globular proteins, or assume US from the ratio Us/ v
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= k;1/ké, where k}‘ and k; are the parameters found from the approximate
fit (equations 58 & 59), a stable fit may be found.

Rowe (1977) has shown that the swelling, Us/ v , can be found from:

v k
S -_1
v k
s
(62)
Therefore
M.v, M, ko
vV = == .= .V
€ Na Ny K
(63)

The value of Gs/ v and hence Ue thus found is independent of any assumed
model for fha protein. Since the determination of UE by back substitution
into the equations given at the beginning of 1.7. after the axial ratio has
been determined is dependent on the model chosen (i.e. an ellipsoid of
revolution), an estimate for the "goodness of fit" of an ellipsoid of
revolution is now available by comparing the model dependent UE with model
independent V_ (or, eguivalently, Gs oT Us/ v).

This theory also provides a new shape function "R", which is

independent of particle swelling:

~
[}
< |
—
+
i
Hﬂﬁ,
—?
Qo
11
—
=
iﬂm

(64)
Wales & Van Holde (1954) had previously rsported that the ratio ks/[n]
was some unknown function of shape and equal to 1.6 for spherical
particles; this agrees with that predicted by equation (44) (Figure 13).
R varies rather rapidly with axial ratio for ellipsoids, sven for low
axial ratio, and this function provides a precise method for

characterizing the axial ratio of relatively symmetrical particles.
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Besides its greater sensitivity than the g function (or the ¥ function),
R has several other advantages:

(1) unlike B computation of R does not require knowledge of the absolutse
solute concentration (Rouwe, 1977)

(2) less data is required to compute R and hence the error in the fipal
function is minimized. As rotational parameters are generally very
difficult to determine, as will be evident from the sarlier parts of this
chapter, the R function is also to be preferred over swelling indspsendent
functions involving thsse. The R function is also to be preferred over
the scattering Y and o functions mainly because of thes particle
homogeneity problsm mentioned in section 1.6. The B8 function can still
however be useful, precisely because of its lack of variation Pﬁr oblate
ellipsoids, in deciding whether the macromolecule is better modelled by
either a prolate or an oblate sllipsoid. Experimental values for B and
ks/[n] (=R) have been tabulated for a wide range of protsins by Creeth

& Knight (1965). Values of 8 below the theorstical minimum of 2.112 x 106
and above 1.6 for R may indicate that some proteins cannot be modelled by an
equivalent ellipsoid of revolution. This has been suggested for Bovine
serum albumin (BSA). A table of values of axial ratio calculated from
the R function for recent data, together with a comparison of their
'model dependent' estimates for GS/U with their 'model independent!
estimates to determine the 'goodness of fit'! of an sllipsoid of

revolution, is given in Table 2.

1.8. Comment
Although a hydrodynamically equivalent ellipsoid of revolution
model can now be fitted with much greater precision to many rigid

macromolecules with the aid of the R function (and possibly the I function)
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the distinction still has to be made as to whether the macromolecule
is better modelled either by a prolate or an oblate model, It is clear
from a perusal of the crystallographic models of many globular proteins
such as carboxypeptidase, myoglobin and ribonuclease (Table 3) that in
many cases this is quite arbitrary and indeed in some cases is
impossible

It would be a significant step forward therefore if the restriction
of two equal axes on the ellipsoid were removed to allow use of the more
general tri-axial ellipsoid. However, either due to the lack of the
theoretical relationships linking the axial dimensions of the ellipsoid
with experimental parameters, or, even if they are available, due to the
lack of the necessary expsrimental precision, numerical inversion
procedures or data analysis techniques, this model has not, to date, been
available. The aim of the rest of this thesis is to show that the general
tri-axial ellipsoid can now be successfully employed to model bioloéical
macromolecules in solution. We will start by deriving the tri-axial

viscosity increment squation.



Table 1. Values of A, Eg’ 1 Kq2 Kpr Koy &9 Eo9 £ and T for

prolate and oblate sllipsoids of revolution

45.

g 2 3 4 5 6 7 8 5 10
ratio
Ah 2,500 2,490 2,692 3.071 3.575 4.177 4,862 5.624 6.457 7.359
Ao 2.500 2,356 2,187 2.070 1.989 1.931 1.887 1.854 1.827 1.805
Ea,p 2.500 1,932 1.574 1,373 1.251 1.1717 1.115 1.3075 1.044 1,020
ea,a 2,500 2,522 2,343 2,202 2,102 2.029 1.974 1.931 1.896 1.868
Eb;p 2,500 2,768 3f250 3.920 4.737 5.679 6.736 7.899 9.164 10.528
Eb;o 2,500 2.273 2.110 2.003 1.932 1.882 1.844 1,815 1.792 1.774
K1;p 2,500 1,932 1.574 1,373 1.251 1.171 1,115 1.075 1.044 1.020
K1,g 2,500 2,522 2,343 2,202 2.102 2.029 1.974 1.931 1.896 1.868
kz’p 2,500 2.211 2,133 2,222 2,413 2,674 2,989 3.349 3.751 4.189
K2,o 2.500 2.439 2,265 2.136 2.045 1.980 1.930 1.892 1.862 1.837
Kz,p 2.500 3.047 3.809 4.769 5.899 7,182 8.609 10.174 11.871 13.698
KS’G 2.500 2.190 2,032 1.937 1.875 1.832 1,801 1.777 1,758 1.742
51’p 1.000 0.756 0.588 0.487 04421 0,374 06340 0,313 0.292 0.275
51,0 1.000 1.000 0.920 0.860 O0.818 0.787 0.763 0.745 0.731 0.719
Ez,p 1.000 0.865 0.797 0.788 0.811 0.854 0.911 0.976 1.051 1.129
Ez,n 1.000 0.967 0.89C0 0.834 0.796 0.768 0.747 0.731 0.718 0.707
gS;p 1.000 1.192 1.423 1.691 1,983 2.295 2,623 2.966 3.322 3.690
ES,D 1,000 0.868 0,798 0,757 0,729 0.711 D.697 0.686 0.678 0.671
Hp 3.200 3,122 2,960 2.778 2.601 2,438 2,291 2,159 2.041 1,935
Hn 3.200 3.180 3.179 3.192 3.208 3,225 3.241 3.255 3.268 3.280
subscript p: prolate ellipsoid

o: oblate ellipsoid



Teble 2. Use of the R function to predict the conformation of various macromolecules in solution
in terms of an ellipsoid of revolution model

k K madel model
Protein s n [0 R axial dependent independent Conclusion
ml/gm  ml/gm ml/gm ratio (ua/;) (Ua/;)
1 : * + * .'.
Apoferritin 8 12 5.16 1.55 1.45 2.6 1.5 spherical
BSA> 5.5 7.7 2,75 2.0 — — 1.4 not a hydrodynamic
: ellipsoid (ef B<
2.1)

Fibrinogen3 7 14 7.8 0,9 6.3+ 1.1+ 2.0 prolate ellipsoid
~6:1. Agrees with
electron microscopy
(Hall & Slayter,

1959)
4 e ah podYs qot .

C—-protein 1 15.4 12,6 0.87 26.0,6.65Y 0,9,2,12 1.4 oblate ellipsoid

’ . ~ 2531
P’lyuain5 85 92 234 0,38 T - 4.3+ 1.1 not hydrodynamic
6 r + ellipsoids of

Synthetic A~filaments 160.8 366 176 0.9 19,5 16 2,3 revolution

Collagen aonicatea7

(1) Nr = 352,000 : 3os B8O 1252 0,246 BU+ 2.28+ 2,85 prolate~8031

(i1) Nr = 330,000 291 756 1078 0,270 _54* 2.85~+ 2.60 prolate ~65:1

1
(1i1) m_ = 273,000 241 564 639 0,377 307 6.12t 2,34 not hydrodynamic
g I ¥ ellipsoids of
(iv) m_ = 227,000 193 428 400 0,483 18 9.13 2.22 revolution

" _
1 prolate ellipsoid, oblate ellipsoid. Refs: 142 Rowe & Pancholi (unpub.), 3 Rowe & Mihalyi (unpub.)
4 Offer et al (1973), 5 Emes (1977), Emes & Rowe (1978a), 6 Emes (1977), Emes & Rouwe (1978b),

7 from Nisihara & Doty (1958)

‘gy
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Table 3. Crystallographic dimensions of some globular proteins

Protein Dimensions (R) Refersence
Carboxypeptidase 50 x 42 x 38 Lipscomb (1971)
Myoglobin 43 x 35 x 23 Kendrew et al (1958)
Cytochrome c 25 x 25 x 35 Dickerson & Geiss (1969)
Lysosyme 45 x 30 x 30 Blake gt _al (1965)
Ribonuclease 38 x 28 x 22 Kartha et al (1967)

Pre = albumin 70 x 55 x 50 Blake et al (1978)
Hemoglobin 64 x 55 x 50 Perutz et al (1960)
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Figurs 1. A macromolecule in solution is generally

swollen due to solvent association
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Figure 2., Mathematical models for macromolecules in solution
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Axial Ratio

Figure 4. Plot of the viscosity ;pcrement as a function of axial ratio

for ellipsoids of revolution
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Figure S, Plot of the translational frictional ratio (the "Perrin

function") as: a function of axial ratio for ellipsoids

of revolution
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Figure 6, Plot of the rotational diffusion coefficient ratios and

rotational relaxation time ratios as a function of axial

ratio for ellipsoids of revolution




Figure 7. Dielectric dispersion curves for prolate ellipsoids of

revolution. Constant dipole angle ( 6= 450) and varying

axial ratio (a/b from 1 to 50)., From Oncley (1940)
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Figure B. Plot of the harmonic mean rotational relaxation time ratio

as a function of axial ratio for ellipspids of revolution
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Figure 9. Plot of the fluorescence anisotropy relaxation time ratios as

a function of axial ratio for ellipsoids of revolution
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Figure 10. Plot of the 'reduced! radius of gyration as a function of
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axial ratio for elliescids of reveolution




Figure 11. (a) Values of axial ratio and hydration as a function of

\’(US/V) . Contour lines denote values of w(Vg/ V)

(b) As above, but as a function of (f‘/f‘D).(US/V)VS.

Contour lines denote values of (1“/1’0)..('\7$/3)1/3

(from Oncley, 1941)
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Figure 12. Asymmetry and hydration (i.e. solvent gssociatinn) of

certain protein molecules. (from Oncley, 1941)
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Figurs 13. Plot of the Scheraga & Mandelkern 8 (x 10-6) and Rowe R functions

versus axial ratio for ellipsoids of revelution
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Figure 15, Plot of My and M @s functions of axial ratio for ellipsoids

of revolution
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Figure 16. Plot of Yar Yy and ¥ as functions of axial ratio for ellipsoids

of revolution
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Axial Ratio

Figure 17. Plot of A as a function of axial ratio for ellipsoids

of revolution
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of revolution
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Figure 19. Plot of Kee Ky and K as functions of axial ratio for ellipsoids

of revolution
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Figure 20. Plot of 51, 52 and 53 as functions of axial ratio for ellipsoids

of revolution
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Figure 21, Plot of Y as a function of axial ratio for ellipsoids of revolution

(from Martin, 1964)
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Figure 22, Plot of o as a function of axial ratio for ellipsoids of revolution
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CHAPTER 2

The Viscosity Increment for a Dilute, Newtonian

Suspension of Tri-axial Ellipsoids
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2.1 Hydrodynamic Forces and Brownian Motion

Although the forces and torques exerted upon a suspended particle
by a fluid are all ultimately of molecular origin, it is convenient to
distinguish those that can be explained by continuum hydrodynamics from
those, dus to molecular fluctuations, that give rise to Brownian motion.
If we first completely neglect the Brownian motion, it is clear that,
once a stsady state has been attained, suspended particles frees of any
external imposed impressed forces or torques must move in such a way that
the net hydrodynamic force and torque, TH acting upon thesm are zero,
i.e. TH = O,

Let us consider a steady simple shearing flow (section 1.3.), as in,
for example, a simple capillary or Ubbelohde viscometer experiment
(Yang, 1961). The motion of the fluid in the neighbourhood of any point
can be decomposed into three components; a translational velocity which
varies from point to point, an angular velocity which for this typs of
flow is the same for all points, and a purs straining motion which again
is the same for all points. If now a single, neutrally bouyant, rigid
ellipsoidal particle is introduced the flow will be disturbed, although
at large distances from the sllipsoid the disturbancs will tend to zero.
We shall assume that the motion of the ellipsoid and of the fluid is such
that the Reynold's number (Batchelor, 1967) is very small. Then it is
possible on the basis of work by Oberbsck (1876) and Jeffrey (1922) to
say what the hydrodynamic forces and torques acting upon the particle ars.
In particular it is known that the force will be zero when the translational
velocity of the particle is the same as the translational velocity of the
point in the wundisturbed flow at which the point is suspended. The

situation for angular velocity is more complicated since two factors come
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into play; one gives a torque if the angular velocity of the particle

differs from the angular velocity defined by the undisturbed flow (or,

equivalently, by the actual flow at infinity), whilst the other gives

a torque if the principal axes of the ellipsoid have a different

orientation from the principal axes of the straining motion defined by

the undisturbed flow. Taken together, these mean that the angular

motion of the particle under zero hydrodynamic torque conditions is very

complicated (Chwang, 1975) and a complets solution for it is not known.
Turning to the Brownian motion which is in the nature of

fluctuations the simplest question we can ask is what is the average

velocity and the average angular velocity of the particle? By the

average we mean in the first instance the time average, although in practice

this will be assumed equal to the volume average taken over an ensemble over

a very large number of particles suspended in unit volume (see Batchelor,

1970 for a detailed discussion of various methods of averaging). Ignoring

for the moment the hydrodynamic forces, we can answer the question by

saying that on average the particle is at rest in the local frame of

reference defined by the undisturbed flow. In other words it is on averags

moving with the translational velocity of the point in the undisturbed flow

at which it is suspended and with the angular velocity defined by the

undisturbed flow (Kubn & Kuhn, 1945, Brinkman et al, 1949, Scheraga, 1955).
When we come to consider the combined sffect of the hydrodynamic forces

and the Brownian motion no problem arises with the translational motion

since both effects tend in the same direction - motion with the

translational velocity of the flow. But for the angular motion the

gsituation is less simple, the two effects do not have the same tendancy

and we must consider a range of possibilities depending on the relative

strengths of the two. This range is represented by the Peclet number
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o= G/6 (Brenner, 1972a) where G is the shear rate and 6 the mean
rotational diffusion coefficient. We shall only be considering the case
of overwhelming Brownian motion (¢ +0) in which the hydrodynamic effects
are completely negligible compared with the Brownian motion effects. Thus
we shall take it that on average the particles are rotating with the local
angular velocity of the ambient flow; and we may additionally assume that
the orientation of the particles will be random. This last fact would not
be so if hydrodynamic forces and torques were not negligible for they

introduce systematic mections and hence prefsrred orientations.

2.2, The Simha Model of Overwhelming Brownian Motion

Wle consider a homogeneous dilute suspension of identical rigid
8llipsoids randomly orientsed in an incompressible Newtonian fluid in
which they are neutrally buoyant. The ambient flow is taken to be a
slow simple shearing flow, whilst the suspended particles are taken to
be moving with the velocity and the angular velocity of the ambient flouw
appropriats to the point at which each is suspended. WNear each particle
this ambient flow is disturbed but is still taken to be a slow (low
Reynold's number) flow so that we may apply the classical results of
Jeffrey (1922).

This model, which is taken to be appropriate for the case of over=-
whelming Brownian motion derives from Simha (1940) although in his original
work doubt is left about whether or not the particles are rotating with the
local angular velocity of the fluid. An attempt to clsar this difficulty
is made below (sectinn 2.6.). The key simplifying feature of the model
introduced by Simha is that it eliminates the complicated statistical

problem presented by the Brownian motion by substituting an assembly of
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particles all moving with the average motion. This, together with the
assumptions of diluteness and random orientation, allows us to compute

the effect of the suspended particles by simply summing their individual
effects. The isotropy of the particle distribution in the model means
 that non-Newtonian behaviour will not appear, and also allows us to use
the snergy dissipation method of computing the viscosity (Batchelor, 1970,
Brenner, 1972b, p93).

The simplifications of the model are achieved, however, at a price.
Non-Newtonian and concentration dependent effects, which to the theorstical
rheologist are of the greatest intsrest, have been deliberately discarded;
and the model can say nothing about lesser degrees of Brownian motion.

In effect we shall be calculating the first term of a series; nevertheless
this is of great value to the molecular biologist who can deliberatsely
arrange the conditions of a viscosity experiment so that the model is
applicable:

(i) Giesskus (1962) has shown that non-Newtonian normal stress effects are
of 2nd order, and can thus be neglected for very low shear rates as in, for
sxample, a capillary viscometer (Yang, 1961);

(ii) Viscosity coefficients are normally extrapolated to "infinite dilution'
i.e. zero concentration-dependent sffects, to give the 'intrinsic viscosity'

(Van Holde, 1971), related to the viscosity increment by equation (8).

2.3, The Viscosity Increment

We let n be the viscosity measured in an experiment on a dilute
suspension of particles in a fluid of viscosity no. If ¢ is the volume
concentration - the total volume of the particles in unit volume of the

suspension - then the viscaosity increment v is defined, from
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equation (7), by

n
— =1+ v
o
(65)

where, when V is independent of ¢, the linear dependence of q/ B

upon ¢ gives the empirical characteristic of a dilute suspension.

From the theorstical point of view however, a dilute suspension is

one in which thers are no hydrodynamic interactions between the
particles and thus one in which each particle independently contributes
to the viscosity the same amount it would were it alone present. This
contribution for a general ellipsoidal particle was first calculated by
Jeffrey (1922) using the simple energy dissipation analysis for averaging
over the particle ensemble (Batchelor, 1970) and it is a straightforward
matter to extend his results to cover the case of ellipsoids rotating
with the local angular velocity of the ambient flow as required by our -

model.

2.4, The Flow Velocity and Pressure

In order to calculate the additional dissipation of energy caused

by introducing the particle into a given flow, we compare that given flow
with the conseguent disturbed flow within a suitable sphere, S, of radius
R, centred on the particle position. We impose two raquiraménts upon S:

first, that it is small compared with the scale of spatial variations in

the given flow, and thus within it that flow is effectively given as

a linear variation of velocity with position; secondly, that it is large

compared with the size of the particls, and thus that the disturbed flouw

will not appreciably differ from the given flow by the time the surface



74.

of S is reached. Naturally, these requirsments can only be met when
the particle is, as we have assumed, very much smaller than the scale
of spatial variations in the velocity field of the given flow.

For our purposes then, the disturbed flow may be taken to be the
flow of an incompressible fluid in the region betwsen the rotating
ellipsoidal surface of the partiele and the concentric spherical surface
S. On the inner surface we impose the usual no-slip boundary condition,
whilst on S we require the velocity field to be sgqual to its value in
the original flow. We give the velocity components of the two flows with
respect to rectangular Cartesian axes fixed in the rotating particle so

that its ellipsoidal surface will always be given by

(66)

The undisturbed flow is given, within S, by

U, ¥ g.. X
glJ J

vhere gij are the components of the velocity gradient tensor which are

by our assumptions, independent of position within S. In this equation
and in subsequent equations, the indices range over the valuss 1,2,3 and
the summation convention is used whereby when an index is repeated within
a term a summation is indicated over the three values aof that index.

Using ellipsoidal harmonics, Jeffrey was able to give the flow
velocity and pressure in the region of S for R large, but finits. He gives
the result under the assumption that the angular velocity is such that no
net hydrodynamic torque acts on it, i.e. hydrodynamic effects alone affect
the motion of the particle. In order to consider the Brownian motion we

follow Simha in dropping this restriction whence the flow near S is found,
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to leading order, to be

Z
e = u® - A, [L__l_J+§?i [_L_r_]
i i 9X . 3 5

i R

-~

(67)
In this equation, ¢ = Aijxixj’ whilst the Aij themselves are coefficients
independent of position but dependent on the gij and the components,mi
of the angular velocity of the particle; their explicit values are given
by Jeffrey (see Table 4 for the relationship between his notation and ours).
We consider the values of the Aij below.
On the assumption that terms of second order in the velocity may be

neglected and that the particle spins are of the same order as the fluid

velocitises, the dynamical equation for the fluid reduces to

nviu = vp

(68)
from which the pressure, p, can be found. For the disturbed flow we find

the pressure on S to be

_50n¢

P=7P
RS (69)

(o}

where Po is a constant.

2.5. The Dissipation of Energy

Assuming a stsady state, we can compare the rates of dissipation
of energy within S in the two flows by comparing the corresponding rates
for working of the viscous stresses on the surface S. This rate of

working, dW/dt, is given by

fa ™

W
t

[a ¥

_ 0
= J u; Uij nj ds (70)
s
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wherse
au. Bui
933 = TP 3y +m [Bx. "53?._}
J (71)
are the components of the stress tensor, and
i(.i
nj =
(72)
are the components of the unit normal to S.
For the disturbed flow we find
dw _ 8 3 32
dt T3 Ma3;35R Y FTnA e
(73)

where the a;; = %(gij-+ %ﬁ) are the components of the local distortion
in the undisturbed flow. On the other hand, the well-known formula of
Stokes gives, for the undisturbed flow

dw

L. | m™a..a..R
dat 3 "M3i%y

3

(74)
We thus obtain an expression for 4 , the extra dissipation. of energy when

the particle is present, namely

A:éz-n-nA

3 g

1J°i4

(75)

If we split gij into its symmetric and skew-symmetric parts, we have

32
N = 2=
3 WT](Aijaij + Aija )

ij

(76)
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where Eij = %(gij - gji)' Jeffrey, as a consequence of the dynamical
assumption mentioned above, was working with symmetrical Aij’ and so
naturally obtained only the first term in our expression for 4; and

it appears that Simha, although he removed the restriction on A,

failed to find the second term. The consequence of this for his

calculation will now be discussed.

2.6. The Particle Rotation

Simha takes the average angular velocity to be zero and on this
basis calculates his well known formula for v (equation 9), a formula
which has been shown to give good agreement with observations (Mshl, Oncley
& Simha, 1940, Tanford, 1961). A few years later, Saito (1951) using the
assumption that the particles should rotate on average with the local
undisturbed rotation of the fluid obtained precissly the same result; he
suggested that Simha "has committed some errors in calculation" but does

not investigate the matter further. Using Jeffrey's notation (Table 4)

we have:
Aijaij = (Aa + Bb + Cc) + (F+ F')f + (G + G)g + (H + H")h
(77)
Aljgi\j= (F‘ - F)E % (G' = G)ﬂ + (H' = H)C
(78)

whilst the values of, for example, F and F! are

2 1
5 - By £ -¢ ao(E - w)

2
2a$ (b Bo + czyo)

(79)
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(80)

In Jeffrey's papsr the ub' gtc. in the numerators of the above expressions
are misprinted as oy etc.

We can thus deduce that

o £5 4 02 % D2+ (02 - A (E -u)f

(F+E)f = =

2a

2(b28_ + c2y)
(81)

; (b2 - c?)fE + (B2 + D) (E - w )E
(F - F)E = L

2(b280 + c2y0)

(82)
where we have utilised the various relations between oy su etc. that
are given by Jeffray.

Now Simha apparently did not find the Aij Eij term and thus would
not have had terms like (F;- F ) in his calculation. We can see,
however, that taking w, = 0 as he apparently did, in the (F + F')f term
gives the same final ressult as taking wy = £ in the sum of the (F + F')ﬁ
and the (F‘- F )g tarms. Since the same argument appliss to the other
terms we conclude that Simha's formula (equation 9) although incorrect for
wy = 0 on account of the omission of the term Aij gij’ is, by a lucky
coincidence, actually correct if . & €y Wop =Ny g =5

It is worth noting that if one does take w, = 0 and includes the

1

Aij Eij term, one obtains for spherical particles v = 4, in contrast to

Einsteins (1906, 1911) value of 2.5. The resultv = 4 forw, = 0 agrees
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with that previously found by Brenner (1970). In all that follows we
take the assumption that w, = £ etc. i.e. that the particles are on

average rotating with the local angular velocity of the fluid.

2.7. The Calculation of v

To complete our calculation we taks, as before, the given flow to be
locally a simple shearing flow with shear rate G. The principal axes of
any particular particle will not in general coincide with the shear axes
but, using the Euler anglss to describe relative orientation of the
two sets of axes, we can calculate the components g j relative to the
particle axes in terms of G and the Euler angles 6, ¢ and V. Hencs we
can obtain A for that particle as a function of these variables; the
details can be found at least for a special case in Jeffrey's paper (1922).
Since Jeffrey's calculations show that the Aij are linear in the gij'a,
it follows that 4 will involve G2 as a factor and hence that the total
dissipation will be of the form nG2 as originally asserted.

To find the total dissipation in unit volume we averags the effects

of the N particles on the assumption that they are randomly oriented,

abtaining
2m r
.. r A8 i
- 21 4T . ( r‘}":d’) sin 6 do d¢ dlfJ
Q (o] b

(83)

The integrations yisld

2
ia ™n NG Z

4=

(84)



where

aa.

7 = 1
= ga Bn Y" . Y” an . an Bn
o 0 o 0 0O 0
+
L1 oY T s " P
40

Thus v is determined from

nwgl = nvN% Tabc@? = E:,% TNG2 Z

as

Hence on substituting for Z we obtain

1" 8ll 1"t
o
1 { 4( o o] i Yo)
ot [ ] "mn

1S(BOYO*‘YOGO * aOBOJ

v o=
abc

+ O o
YO 0 o]

Vg 2 2 vo2 2 vo2 2
a B ,
O(b Q *c YO) BO(c YD * R ao) Yo(a GO e 80)

(85)

(86)

(87)

+ Y
0 0

¢ L
5

+

2 2
(b B, + ¢ YO)

-+

L) 2 L )
C +
80( YO = O"C:v) YO(a aO D BO)

.

where a,b,c are the semi-axes, and the elliptic integrals o etc. now

depend on a,b and ¢ (Appendix I).
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The formula reduces to the Simha-Saito formula (equation 9) when
b=c, and gives Einstein's value of 2.5 when a=b=c. It may be of
interest to note that had we followed Simha in taking w, = 0 then Z

would have contained the following term in addition to those given above,

L b2+C2 . c2+32 . a2+b2
bZB0 + c2y

24 . C2Yo " azao azao - b280

(89)
It is the presence of this added term that gives the value of v = 4
for spheres rather than the Einstein value v= 2.5 which is obtained

when it is absent. The value of 2.5 has been confirmed experimentally

for polystyrene latex spheres by Cheng & Schachman (1955).

2.8. Discussion
An equation similar to (88) was given by Batchelor (1970) on the
assumption that the suspended particles, although randomly oriented,

moved so that zero hydrodynamic torque acted upon them. His result was

- abc mnn "o "o

" " "
il 4(do ¥ Bo * Yo) 2 [ 1
+ 5 +
15(B v, + ¥

o +
00

1,1 }
Bo(c? + a8)  yl(a? + b?) -

when written in the same notation as we have used before. It does not
seem likely that (90) would be applicable to the case of overwhelming
Brownian motion since one would need to include the Brownian torgue

TB as well as the purely hydrodynamic torque, TH in satisfying the
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condition of zero net torque, i.s.

(91)
Random orientation alone is not a sufficient characterisation of
overwhelming Brownian motion since one also needs to describe correctly

the distribution of the angular velocity. Both (88) and (90) are

obtained by methods that avoid the full statistical treatment of ths
angular motion but as explained earlier we consider the simplified model
underlying (88) to be the appropriats one for overwhelming Brownian motion.
In effect, formula (88) generalises the Simha-Saito squation for
ellipsoids of revolution, whilst (90) generalises formulae of Jeffrey for
ellipsoids of reveolution. In general the two formulae give quite different
results as can be seen from Figure 25 and Table 5, both of which ars for
convenisnce restricted to the case of ellipsoids of revolution. Since (90)
doss not reduce to the classical Simha-Saito formula the classic
experimental evidence on macromolecules which favours the latter (Mehl, st
al, 1940, Lauffer, 1942) strengthens the view that (90) is incorrect. More
recent experimental sevidences is given by Tanford (1961) who allows for
particle swelling due to solvation and Table 6 extends his tables to
include a comparison with the Jeffrey-Batchelor equation. The table
compares the axial ratio inferred from translational diffusion experiments
with that inferred from viscometric experiments on the basis first of the
Simha-Saito equation and secondly of the Jeffrey-Batchelor equation.
Tanford (1961) says "within the accuracy of the measurements, the
description of globular proteins in aqueous solution provided by the

(Simha-Saito) equation is identical with that provided by (translational)
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diffusion". On the other hand we see that the Jeffrey-Batchelor equation
gives values of the axial ratio that are consistently too high and
outside the expected experimental error bounds. We conclude that (90)

is not applicable to the cases of interest to the molecular biologist.

As previously stated, we have avoided the full statistical treatment
of the angular motion but have made the assumption of particles being on
average at rest in the local referential frame in which they are
suspended to be appropriate for the case of overwhelming Brownian motion.
Although this has been rigorously proved only for axisymmetric particles
(Brenner, 1972), we have made the assumption that it will be a good
approximation for general tri-axial ellipsocids, at least for low axial
ratios.

Since the derivation of equation (88) a general analysis using the
full statistical treatment of the angular motion has been given by
Rallison (1978). His results for the case of overwhelming Brownian metion
show that to first—order in the shear rate the non=Newtonian stress effects
vanish, which is consistent with our assumption of Newtonian behaviour for
very low shear rates. He also gives an expression for v correct to first-
order in the shear rate, although not in the form of a simple formula like
equation (88), but by using numerical methods Rallison is able to give a
plot of v for various axial ratiosj the results are clearly very close to
those obtained from equation (88) - compare my Figure 26 with Rallison's
Figure 7. However, an exact comparison (personal communication by
J.M. Rallison) shows a very slight discrepancy between values from
equation (88) and Rallison's procedure, although no differencs at levels
likely to be experimentally significant for globular particles (i.e.

a/b: 1.0 = 3.0, b/c: 1.0 = 3.0) is observed, and the discrepancy is not



84,

apparent within four significant figures for a/b: 1.0 — 2.0, b/c:
1.0 — 2.0, Therualues given in Table 7 are therefore definitive.

It has been indicated to us (J.M. Rallison, H. Brenner, private
communications of unpublished work) that our formula requires the
addition of a very small term related to the deviation from our assumed
condition of non-axisymmetric particles rotating on average with the

local angular velocity of the fluid:

2
[ a2 - b2 & ¥ - &2 . c2 - a2 :|
7 z 7 42 T 7
1 a e + b Bo b B0 + C T cY, + a ao
sabc Al B WE 4 ok c2 + g2 | (88b)
2(1 + hZB + bZB + CZY + CZ'Y + 3_23 :
Aoy 0 ) o} o) 0

The numerical results show our approximation’ to be extremely accurate
for 'globular' particles, as noted above, but for certain particles of
higher asymmetry calculations suggest that deviations of up to 1% inwv
can arise, It is clear though that our formula provides a good
approximation over the entire molecular range., Of particular interest
is the fact that the discrepancy tends asymptotically to zero for
ellipsoids whose axes are all substantially different in length (i.e.

a>»b>»c - "tapes").
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The relation between the notation used in this study

and that used by Jeffrey (1922)

= |
(Aij) A H G
H! B F
G F!' C 5
a..) = a h
( 1) n N r%
h b f
n, A, n
g £ c >
N " "
@l]) = 0 =g n
z 0 -z

-n g 0

85.



Iable 5

v for an ellipsoid of revolution calculated from the Simha = Saito

equation and the Batchelor - Jeffrey equation

Axial Ratio

1.0
2.0
3.0
4,0
5.0
6.0
7.0
8.0
9.0

10 .D

Prolate Model

2.500
2.908
3,685
4,663
5,806
7.099
8.533
10.103
11.804

13.634

2,500
2,583
2.786
3,077
3.434
3.844
4,302
4,804
5.346

5,928

Oblate Meodel

2,500
2.854
3.431
4,059
4,708
5,367
6.032
6,700
7.371

8.043

2.500
2.610
2.868
3.198
30563
3,947
4,342
4,744
5,151

5.562

86.



Table 6

B87.

Extension of Tanford's Tables ("Physical Chemistry of Macromolecules™,

1961, Wiley & Sons, p 359 and 395) to compare the axial ratios

predicted by “he Simha=Saito equation and the Batchelor=Jeffrey

equation, using a 0.2 grams/gram solvation for four globular proteins.

Prolate

i e,

Diffusion S-S

a a
v /b /4
Ribonuclease 3.6 2.1 2.9
B=lactoglobulin J.6 3.7 2.9
Serum albumin 4,0 4,9 3.3

Hemoglobin 3.8 2.1 3.1

B-J

5.5

5.5

6.5

6.0

Oblate
e e ——,
Diffusion S=S
a a
A
22 3.4
4,0 3.4
5.0 4.0
2.2 3.6

8-3

5.3

5.3

6.3

5.8



Table 7. UValues of v as a function of (a/b, b/c) for a general tri-axial ellipsoid (a>bdc)

Prolate
Ellipsoid

-
L]
o

1.1

1.2

1.3

(on the basis of squation 88)

1.4

1.5

1.6

1.8

1.9

2.0

Oblate Ellipsoid

1.2
1.3
1.4
1.5
1.6
1.7
1.8
1,9

2.0

2.500
2.507
2,525
2,553
2.588
2,630
2.677
2.729
2.785
2.844

2.908

2,507

2,520

2,545

2,579

2.621

2,668

2,722

2,779

2.842

2,908

2,977

2,524
2.544
2,575
2.615
2,662
2.716
2.775
2f839
2,907
2,978

3.054

2,550

2,576

2.612

2.658

2,71

2,770

2.834

2.904

2,978

3.055

3,137

2.583

2.614

2.655

2,706

2.764

2.829

2,899

2.974

3.053

3.137

3,224

2.620

2,656

2,703

2,579

2.822

2,892

2,967

3,047

3,132

3,222

3.315

2,661
2,702
2,754
2.815
2,883
2,958
3,039
3.124

3.215

3.310

3.408

2,706
2.751
2.808
2.874
2,947
3.027
3,113
3.204

3.300

3,400

3.504

2,753

2.803

2,865

2,935

3,013

3,098

3.189

3.285

3.386

2,803
2,857
2,923
2,998
3.081
3,171
3.267
3,368

3.475

3,586

3.702

2.854
2.913
2.983
3.063
3.151
3.245
3.346
3.453

34565

3.681

3.803

‘88
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Figure 25, A comparison of the values of v as a function of axial ratio

predicted by the Simha - Saito and Batchelor - Jeffrey esquations

for ellipsoids of revolution
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CHAPTER 3

Numerical Inversion Procedures:

The Problem of the Line Solution




91.

3,1 Solution of the Elliptic Integrals

In order to determine the viscosity increment v that corresponds
to a particular value of the axial ratios a/b, b/c, the elliptic
integrals o etc. (Appendix 1) must be solved. Analytic solutions
are not possible but the integrals can be solved numerically with the
aid of a high speed computer. The subroutine used for this was the
United Kingdom NAG Mk. 6 routine DO1AGF which evaluates a definits

integral of the form

B
I-= J f(t)dt

A
where A=0, using an interval subdivision strategy developed by Oliver
(1972) and based on Clenshaw-Curtis quadrature (1960). Since infinity
cannot be used as the upper limit, a finite value of B must be spacified.
However, a satisfactory value for B can be determined by using
successively higher values until the value of the integral converges to
a limiting value; in this case a value for B of 106 was sufficient. Higher
values are also suitable although evaluation of the integral takes longer.
The number of interval subdivisions is also specifiable by the user; the
maximum number of S0 was used. The routine alsc estimates the error on
the integrals (O'Hara & Smith, 1968). If this error is greater than the
maximum allowable error specifiable by the user the routine will stop and
print an error message. The maximum allowed absolute error specified was
1.0 x 10_8 (Z.001%). The subroutine for evaluating the elliptic
integrals can easily be incorporated into a program for evaluating v for

a given value of (a/b, b/c). This is given in Appendix V as Program 1.
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3.2, Application to the Crystallographic Dimensions of Myoglobingj

Numerical Inversion
The result can be applied to crystallographic data available for
myoglobin. Kendrew et al (1958) gave the dimensions of sperm whale
myoglobin to be 43 x 35 x 23 E (Table 3), This corresponds to a general
tri-axial ellipsoid of semi-axes a = 21,5, b = 175 aﬁd c = 11.5 3, and
axial ratios a/b = 1.23, b/c = 1.52., Using Program 1 (Appendix V) this
corresponds to a viscosity increment of 2,729. The predicted intrinsic

viscosity can then be found from equation (8):

. B
[n]=vvsz vv |—

v
(92)

where (Gsﬁ) is the swelling ratio (section 1.7.1)., By fitting data

of reduced specific viscosity against concentration (Table 8, Figure 27)'
1 have determined the intrinsic viscosity of myoglobin to be (3.25 * .05)
ml/gm, using a weighted least squares analysis (straight line fit).

The concentrations were determined using a high precision auto density
meter (Kratky et al, 1969, 1973) together with a v for myoglobin of .741
ml/gm (Theorell, 1934):

Py - P,

1 - Vbo (93)
where fs is the solvent density and Py the solute densities. Use of the
auto density meter, which is based on the time taken to perform a

preset number of oscillations of a U-tube filled with the sample has

the added advantage that, besides being very accurate, only small amounts

of fluid are reguired ( ~1 ml)., The experimental arrangement used for

the viscosity and densimetric work is illustrated in Figure 28, The
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platinum resistance thermometer shown was used to monitor the sample
temperatures to accuracies of ,005 degrees and was calibrated by myself.
In order that the crystallographic dimensions gives this same value for
[n], from equation (92), a swelling ratio (Gs/ﬁ) of 1.6 is required;
alternatively myoglobin is more asymmetric in solution.

In order to determine the actual dimensions of the eguivalent tri-
axial ellipsoid for myoglobin in solution (or any other macromolecule)
from the experimental value for [n], the situation is more complicated
however, Although equation (88) defines a unique value of w for a given
value of (a/b, b/c), an analytic inversion of (88) to produce an explicit
expression for (a/b, b/c) in terms of Vv is not available. The inversion
must therefore be done numerically by tabulating, or better plotting v as

a function of (a/b, b/c). The same subroutine mentioned in section 3.1.

Fnrienahxqraié_—i6uA élﬂ;;ﬂ:_iﬁf%éc$a POy be incorporated. A
perusal of Table 7 (produced from Program 2) reveals however that a given
value of V does not correspond to a unigue value of (a/b, b/c) but to a
'line solution' of possible values of (a/b, b/c). This is clearly
illustrated in the contour plot (Figure 29) produced from Program 3 using
GHOST graphical facilities where V is incremented from 2.5 to 7.0 in steps
of 0.,5. In order to determine a unique solution feor (a/b, b/c) and hence
the axial dimensions of a macromolecule in solution other hydrodynamic
information must be usedj we must therefore consider the translational and

rotational frictional properties (section 1.2).
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3.3. Other Tri-axial Line Solutions

3.3.1. The Translational Fricfional Ratioj; the B and R Functions

It was previously stated in section 1.4. that although Perrin (1936)
had provided an explicit formula for the translational frictional ratio
of a general tri-axial ellipsoid in terms of the axial ratios (a/b, b/c),
the elliptic integral in equation (12) could only be solved analytically
for the special case of ellipsoids of revolution (i.e. two equal axes).
Howsver, since the elliptical intsgral is similar to those for the tri-
axial viscosity increment, it too can now be solved numerically using for
example the subroutine discussed in section 3.1, A higher value for the
upper limit, B was required: 5 x 107. A table of values of the Pserrin
function f/?o (sP) for values of a/b and b/c was thus obtained (Table 9).
Again, a perusal of the table reveals that a given value of P has a line
solution of possible values of (a/h, q/c). However, in principle at
least, by combining the line solution for P of a given macromolescule with
the line solution for v, a unique solution for (a/b, b/c) can in principle
be found from their intersection. This can be illustrated by assuming a
particle of (a/b, b/c) = (1.5, 1.5), calculating the corresponding values
for v and P using Program 1, and then plotting the line solutions using
Program 4, Unfortunately Figure 30 reveals that the intersection for
accuracies in v and P to four significant figures is very shallow, and
allowing for + 1% experimental error in each thers is no intersection at
all in the 'globular protein' range of the Figure. There is also the
additional problem that in order to determine experimentally both VvV and

P, knowledge is required of the swollen volume in solution,
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However, now that v and P are available for tri-axial esllipsoids,
then so should the B and R functions which do not require a knowledge
of the swollen volume (equations 45 & 64). I have thus produced tables
of these also (Tables 10 & 11); all four tri-axial functions so far
mentioned viz v, P, 8 and R are plotted in Figure 31 allowing for * 1%
experimental error in sach., There is still no reasonabls intersectionj
the B function is, as expected, seen to be of little practical use as it
is very sensitive to experimental error (the 8- 1% line is completely
off the map area). Of the 4 functions however, the R function is the
most useful since it is relatively insensitive to experimental srror and
the sxpsrimental determination does not require a knowledge of the
swollen volume (section 1.7.1.). In order to find a unique solution for
(a/by b/c) thersfore, this should idsally be combined with a rotational
frictional or relaxation tri-axial shape function which should satisfy
the following criteria:
(i) provides a suitable intersection with R
(ii) is relatively insensitive to experimental error but sensitive to
axial ratio
(iii) is experimentally measurable to a high precision with currently
available apparatus and data analytic tachniqqas and
(iv) does not require a knowledge of the swollen volume for its experimental

determination.

3e3¢2. The Rotational Frictional, Diffusion and Ralaxatinn Line Solutions

For a tri-axial ellipsoid there will be three rotational frictional
ratios qi/ta (i=a,b,c) corresponding to rotation about each of the thres
axes and hence three rotational diffusion ratios Bf/eo. By analogy with

the translational case in the previous section, although Psrrin (1934) had
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given explicit formula for the Cr/au in terms of (a/b, b/c), - egn. (25),
.ths elliptic integrals could only be solved analytically for the
case of ellipsoids of revolution., The integrals can now be solved
numerically, again utilising the routine described in section 3.1 (Programs
142 & 4), There is howsver no experimental technique for determining the
rotational frictional or diffusion coefficients directly; rotational
experiments determine rather relaxation time ratios. For example, the
dielectric dispersion relaxation time ratios are related to the rotational
frictional and diffusion ratios by equations (27). A plot of the
rotational relaxation time ratio line solutions corresponding to (a/b, b/c)
= (1.5, 1.5) is given together with the R function in Figure 32.
Unfortunately, because of the difficulties raised in 1.5.1. resolution of
the dielectric dispersion curve into the 3 relaxation times for a
homogeneous solution of tri-axial ellipsoid particles is impossible in
practice.

Whereas for sllipsoids of revolution there are three fluorescence
anisotropy decay times (equation 42), for general tri-axial ellipsoids,
there will be five (Cantor & Tao, 1971, Small & Isenberg, 1977) related

to the three rotational diffusion coefficients by:

ol . o1 . _ 1
LT3 C 2T3@ 8y B TI@ e
1 . _ 1 (94)

T =308 - 8) > 15 T 3@ + A

where @= (e1 + 6yt 63)/3 is the mean rotational diffusion coefficient,
and A is defined by

" 2 2 2 1
= (8, + 0, +0;-88,-686,-0.0)
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The fluorescence anisotropy relaxation time ratios Tj/ Tﬁ can thus be
svaluated (equation 42, where j is now = 1,2,3,4,5); fhasa have been
tabulated by Small & Isenberg (1977) and are plotted in Figure 33, for
(a/b, b/c) = (1.5, 1.5). Consideration of these functions howsver, at
the moment at least, is purely academicj besides the problesms cited in
section 1.5.4., the necessary resolution of the decay curve into its

four component exponentials (since Ts ~T1) is impossible (Small & Isenberg,
1977). Furthermore, since neither the fluorescence anisotropy decay time
ratios nor the dielectric dispersion relaxation time ratios for tri-axial
ellipsoids are of apparent use at the moment, the same must be true of
their corresponding swelling independent functions, the explicit

expressions in terms of axial ratio being obtainable from:

z, c_lfa
Gi = ET'” ; u = (éé} &;@
1 S 0
(95, 96)
3
f 90 EJo
ne @ 2 g ev®
. fo 5 1 €3
(97, 98)
T 3 T
f o]
K. = Vv (—29 : 3. = [__a 2
) *j I T (99, 100)

where i=a,b,c and j=1,2,3,4,5. The relations for these functions in terms
of experimental parameters have alrsady been given in section 1.7.
Evaluation of the harmonic mean rotational relaxation time ratio in

terms of axial ratio for tri-axial esllipsoids we can similarly obtain from



98.

-‘E—}lz 3
‘o [g_o,,g_oﬁa]
9a Qb Qc

(101)
(Programs 1, 2 & 4, Figure 34), The corresponding swelling independent
functions ¥ and A determined by combining with the translational frictional

ratio and the viscosity increment respectively we can now also obtain from

T 14
SN
(102)
A= F%ﬂ v
(103)

(Programs 1,2 & 4, Figure 34). Unfortunately, these functions are
generally very sensitive to experimental error, as Figure 35 illustrates;
also the problems in determining the harmonic mean relaxation time raised

in 1.,5.4. still apply.

3.3.3 Electric Birefringence Decay: the §+ and 8 Functions
In section 1.5.2. we stated that Ridgeway (1966, 1968) has shown that

the decay of electric birefringence for a homogeneous suspension of
asymmetric macromolecules (e.q. tri-axial ellipsoids) would consist of

two exponential terms:

¢ (32)
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where An is the birefringence, N the number density of particles in
suspension and R the refractive index of the suspending medium. A+
and A_ are complicated functions depending on the initial orientation of
the particles and their dielectric and diffusion properties. lWe may
rewritse NAt / 2n£ as A}, the 'pre-exponential factors'. Equation (32)
then becomes:

1604t

-6
An = A le e-t
+

+ A

(104)

6+ and 9_ are related to the rotational diffusion constants Bi (and hencs

the rotational frictional coefficients since z, = kT/&i) by

I+

8, = %-X 0, % {[ %—Z ei)zeé-f ) 9-8-} ? (105a)

isj *J

kT 1 1 2
_Tzzii_-i [zi_z-z-z.c.lc.}%
1 5 1>) 173 (105b)

The dimensions of equation (105) are of ensrgy/(volume x uiscosityb we

therefore 'reduce' it to a function of shape alone:

red _ Ty abc 1 1 1
% =D Vet = TE [?*T**w]
z 4 g
a b c
| 1 1 i 1 : (106)
- Y12 "o 12 = C”E_',” MR DT (DR
a b c ab Cbcc Ccca
where
) b2 + c2 om 24,2 Lo a? 4 p? (107)

a  b28_ + c2y_ ° Qb T c2y  + ala ’ Cc T al2a o+
o] (0] Q 0 (o]
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The elliptic integrals ab etc. are those defined by Jeffrey (1922) and

are given in Appendix I.

ered

ered
+ -

A plot of the and functions, together with the R function

corresponding to the point (a/b, b/c) = (1.5, 1.5) allowing for T 1%
experimental error is given in Figure 36. It is seen that the
red

intersections are very reasonabls (the 8+ = R intersection is nearly

orthogonal) and the functions are relatively sensitive to axial ratio.
Howsver, experimental determination of Bied requires of course knowledge
of the swollen molecular volume in solution (equation 106). This can be
conveniently sliminated howsver in the standard way by combining (106)
either with the viscosity increment (8) or the translational frictional

ratio (20b). If for example (106) is combined with the viscosity increment

(8), swelling independent 8, functions are produced (Tables 12, 13, Figure

n 6
_ . 6 o *
(Si—-ﬁet U:ﬁA—k[ T][H]M

(108)

where [n] is expressed in ml/gm. Altsrnatively, 9£Ed can be combined

with the translational frictional ratio (20b) to give swelling independent
Yy, functions (Programs 1,2,4, Figure 38):

3 - 3
3 Mr (L-v po) GJ_r

red (f} s
T = 2,23
* 27NAkTw nos

(109)
The &4 and Y4 functions are new. The 6+ functions ars preferred over the

Y4 functions since they require fewer experimental measurements and do not

involve squared or cubed terms; hence in principls can be measured more
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accurately., It is seen therefore that combination of the R-function

with the 6+ functions as a method for determining a unique solution for
the axial ;atins (and hence the axial dimensions, if Ue is known from
kn/ks - section 1.7.1) of a macromolecule in solution satisfies the
criteria (i), (ii) and (iv) of section 3.3.1. In order for the method to
satisfy criterion (iii) however, there still remains the problem of
resolving the exponential decay term into its 2 component relaxation times

or decay constants (the same is true of course for the Bied and Y4

functions). To date this has not been possible. UWe now show that with
a new 'constrained'! least squares algorithm using intersection with the

R-curve as the constraint, this is now possible with currently available

experimental precision.
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Table 8, Values of reduced specific viscosity for various concentrations

of sperm whale myoglobin (0.1M NaCl buffer, pH = 7.1)

Concentration, ¢ Mol nsp/c

(mg/m1) (m1/gm)
90,2 1.450 4,99
66.1 1.298 4451
53,3 1.224 4,20
50.2 14215 4,29
40,7 1.163 4,00
34.4 1.138 4,02
30.5 1.116 3.81
29,6 1.115 3.89
23.2 1.084 3.61
15.5 1.055 3.57
9.7 1.034 3.47
8.1 1.028 350




Table 9. Values of P as a function of (a/b, b/c) for a general tri-axial ellipsoid (a>b>c)

b

Prolate
Ellipsoid

—
.
=]

1.1

1-2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Oblate Ellipsoid

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2.0

o
[wn]
]
o

*

1.001
1.003
1.006
1.010
1.015
1.020
1.026
1.031
1.038

1.044

1,001
1,002
1.005
1.009
1.014
1.019
1.025
1.031
1.037
1.044

1.051

1.003
1.005
1.009
1.013
1.019
1.024
1,031
1,037
1.044
1.051

1.059

1.006
1.009
1.013
1.018
1.024
1.031
1.037
1.044
1.052
1.059

1.067

1.010
1.014
1.018
1.024
1.030
1.037
1.044
1.052
1.059
1.067

1.075

1.014
1.019
1.024
1.030
1.037
1.044
1.052
1.060
1.068
1.076

1.084

1.019
1.024
1.030
1,037
1.044
1.051
1.059
1.068
1.076
1.085

1.093

1.025
1.030
1.036
1,043
1.051
1.059
1,067
1.076
1.085
1.093

1,102

1.030
1.036
1.043
1.050
1.058
1.066
1.075
1.084
1.093
1.102

1.112

1.036
1.042
1.049
1,087
1.065
1.074
1.083
1.092
1.102
1.111

1.121

1.042
1.049
1.056
1.064
1.073
1.082
1.091
1.101
1.111
1.120

1.130

‘gol



Tabls 10, Values of B x 1076 as a function of (a/b, b/c) for a general triaxial ellipsoid (a>brc)

b

a/b

Prolate
Ellipsoid

1.0

1.2

1.3

1.5

1.6

1.7

1.9

2.0

Oblate Ellipsoid

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2,0

2.11
2.112
2.112
2,113
2,114
2.116
2.118
2,120
2,122
2.124

2,127

2.112
2,112
2,113
2.114
2,115
2,117
2,119
2,122
2.124
2.127

2.130

2,112
2.113
2,114
2.115
2,117
2,119
2.121
2.123
2,126
2.129

3,132

2,113
2.113
2.114
2.116
2,118
2.120
2.123
2.125
2.128
2,131

2.135

2,113
2.114
2,115
2,117
2,119
2.121
2.124
2,127
2.130
2.134

2,137

2.114
2,115
2,116
2.118
2.120
2.123
2.126
2,129
2,132
2.136

2,139

2.115
2.116
2,117
2.119
2.121
2.124
2.127
2.130
2.134
2.138

2.141

2.116
2.117
2.118
2.120
2.123
2.125
2,129
2,132
2.136
2,139

2,143

2.117
2f118
2.119
2.121
2.124
2.127
2.130
2.133
2.137
2.141

2.145

2,117
27118
2.120
2.122
2.125
2.128
3,131
2,135
2,139
2.143

2.147

2,118

2,119

2.121

2.123

2.126

2.129

2.132

2,136

2.140

2.144

2,149

‘vol



Table 11. Values of R as a function of (a/b, b/c) for a general tri-axial ellipsoid (a)bdc)

%
a/b

= Prolate
Ellipsoid

.
o

1.1

1.2

1.3

1.4

1.5

1'6

1.7

1.8

1.9

Oblate Ellipsoid

1.0

1.1

1'2

1.3

1.4

1.5

1.6

1.7

1.8

1.0

2,0

1.600
1.598
1.592
1.582
1.570
1.556
1.540
1.524
1.507
1.489

1.47

1.598
1.593
1.585
1.573
1.559
1.543
1.526
1.509
1.490
1.471

1.452

1.592
1.585
1.575
1.561
1.546
1.529
1.511
1.491
1.472
1.452

1.432

1,583
1.575
1.563
1.548
1.531
1.513
1.494
1.474
1.453
1,433

1.412

1.573
1.563
1,549
1.533
1.515
1,496
1.476
1.455
1.434
1.413

1,392

1.561
1.549
1,535
1.518
1.499
1.479
1.459
1.437
1.416
1.394

1.373

1.548
1.536
1.520
1.502
1.483
1.462
1.441
1.419
1,398
1.376

1.354

1.535
1.521
1.505
1.486
1.466
1.445
1.424
1.402
1.380
1.358

1.336

1.521
1.507
1.490
1.471
1.450
1.429
1.407
1,385
1.362
1,340

1.318

1.507
17493
1.475
1.455
17435
1.413
1.391
1.368
1.346
1.324

1.302

1.494

1.478

1.460

1.440

1.419

1.397

1.375

1.352

1.330

1.307

1.285

*S0olL



Table 12. Values of 6+ as a function of (a/b, b/c) for a general tri-axial ellipsoid (a)b>c)

a/b

Prolate
Ellipsoid

-
-
Q

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

Oblate Ellipsoid

1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2,0

2,500
2,549
2,599
2.648
2,699
2,752
2,806
2.863
2,922
2,983

3.047

2,541
2,577
2.624
2.675
2,729
2,785
2.844
2,905
2,968
3,035

3.103

2.568
2,596
2,641
2,692
2.748
2.807
2,868
2.933
3.001
3,071

3145

2.582
2,605
2.648
2,700
2,757
2.818
2.883
2.951
3.023
3.097

3.174

2,588
2,606
2,648
2.700

2759

2,823

2.890

2,961

3.036

3113

34194

2,586
2.601
2,642
2,695
2,756
2.821
2,891
2,965
3,042
3.122

3,206

2,579
2,595
2.632
2.686
2,748
2,815
2,887
2.963
3.042
3.125

34212

2.568
2,279
2.619
2.674
2,737
2,806
2,880
2.958
3.039
3.124

3.213

2.555
2,564
2,604
2.660
2.724
2.795
2,870
2,949
3.033
3.120

3,210

2,539
2,547
2.587
2¢644
2,710
2.781
2,858
2,939
3.024
3.113

3.205

2,522
2.529
2.570
2,627
2.694
2,767
2.845
2.927
3.014
3.104

3,198

‘00l



Table 13. Values of §_as a function of (a/b, b/c) for a gensral tri-axial ellipsoid (ayb)c)

b

a/b

Prolate
Ellipsoid

-—
.
o

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2,0

Oblate Ellipsoid

1.7
1.9

2.0

2,500
2,445
2.387
2,326
2,264
2,203
2.144
2,087
2,033
1.981

1,932

2,454
2.410
2,350
2,286
2,222
2,160
2,100
2,042
1.987
1.936

1.887

2,413
2,372
2,313
2,248
2.183
2,119
2,059
2.001
1.946
1.895

1.847

2,377
2,337
2,277
2.212
2,146
2.082
2,021
1.964
1.910
1.859

1.812

2,344
2,305
2,245
2.178
2,112
2.048
1.987
1.930
1.876
1.826

1.780

2,314
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Figure 27.

Plot of reduced specific viscosity versus concentration for

sperm whale myoglobin (0,1M NaCl buffer, pH = 7.1)

The straight line is that due to a weighted least squares fit
n

to —§CE = [n] (1 +kc) where [n] =3.25 ml/gm and k, =5.9 ml/gm,

1

The weight used was oncentration (ma/mi) (conc. < 40 mg/ml)

- (conc. 240 mg/ml)
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Figure 28.

Photograph of the apparatus used for determining solution
densities and viscosities. Temperatures were kept constant
to within * 0.01° using a high precision Townson - Mercer
constant temperature tank, with a pump attachment to supply
the water bath in the precision density meter. - These
temperatures could be monitored to within X 0.005° using
the platinum resistance thermometer situated directly abaove

the density meter.
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Figure 29. Contour diagram showing curves of constant ¥V as a function of

the semi-axial ratios a/b, b/c on the basis of eguation (88)
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Figurs 30. Plots of constant Vv and P in the (a/b, b/c) plane corresponding

to a/b = 1,5, b/c = 1.5
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Figure 31. Plots of constant v, P, 8 and R, allowing for £ 1% error in

their measured values, in the a/b, b{c plane ccrrssgonding

to a/b = 1.5, b/l‘.‘ = 1.5
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Figure 32, Plots of constant R and the rotational relaxation tims ratios

.5

in the a/b, b/c _plane ccrresponding to a/b = 1.5, b/c = 1
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Figurs 33. Plots of constant fluorescence anisotropy relaxation time ratios

in the a/b, b/c plane corresponding to a/b = 1.5, b/c = 1.5




Figure 34, Plots of constant R, ¥ and A in the a/b, b/c plane correspending

to a/b = 1,5, b/c = 1.5
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Figure 35. Plots of constant R, ¥ and A, allowing for + 1% error_in

their measured values, in the a/b, b/c plane corresponding

to a/b = 1,5, b/e = 1.5
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Figure 36. Plots of constant R, ered and ered’ allowing for ¥ 1% error in

-+ -

their measured values, in the a/b, b/c plane corresponding to

a/b = 1,5, b/c = 1.5
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R+1 o) R '1 °fo

Plots of constant R, §+ and 5_, allowing for B4 1% measured error

in R and t 2% measured error in 6+, in the a/b, b/c plane

correspanding te a/b = 1.5, b/c = 1.5
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Figure 38. Plots of constant R, T and y_, allowing for * 1% measured error

in R and ¥ 2% measured error in Y0 in the a/b, b/c plane

corresponding to a/b = 1,5, b/c = 1.5




CHAPTER 4

Determination of a Stable, Unigue Solution by Combining Results

from Viscosity, Sedimentation and Electric Birefringence
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4,1 Methods for Analyzing the Decay Curve

Resolution of a 2-term exponential birefringence decay curve into
its two component relaxation times or decay canstants is notoriously
difficult, even for components that differ by several orders of magnitude.
The situation is especially difficult for globular macromolecules faor
which the decay constants will generally not differ by more than -~ 20%
(see below). A recent review of the salient methods currently used for
attempting to analyse multi-component exponential decay curves, emphasing
these difficulties, has been given by Jost and 0'Kanski (1978). The three
methods that are apparently the most useful are
(1) Graphical Peeling Analysis (0'Konski and Haltner, 1956)
(2) Non-Linear Least Squares Analysis (wilde, 1964, Powell and Macdonald,

1972, Gill and Murray, 1976)

(3) Fourier Transform Solution of the Laplace Integral Egquation (Gardner,

Gardner, Laush & Meinke, 1958)

4.,1.1., Graphical Peeling Analysis

In this method, the logarithm of the birefringence is plotted as a
function of time., For a single term decay this should of course give a
straight line, If the plot for a two~term decay can be extended to
relatively long times with sufficient signal-to-noise ratio, and if the
tﬁn terms are not too close, then the limiting slope will give an estimate
for the longest relaxation time (or shortest decay constant). This
limiting slope can be extrapolated back to zero time and then "subtracted"
from the originmal signal; the slope of the resultant can then be
detarmined and hence the shortest relaxation time found (Figure 39). As

might be expected, this method, although rapid, is very approximate and
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is of little use for resolving relaxation times of the same order of
magnitude., However it is still useful for indicating the orders of
magnitude of the decay constants which may be used as initial estimates

in non-linear least squares iterative procedures.

4,1,2. Non-Linear Least Squares Iterative Analysis

In this method, the weighted sum of the sgquares of the residuals
x%is calculated between a set of experimental data points and the
function to be fitted. If xj represents the value of the j'th
experimental point and gj(xm) the corresponding computer point for a
given estimate for the X, the number of independent variables, then we

define our 'goodness of fit! parameter,x2 s by

2

(110)
where ‘G is the standard error in the j'th experimental point. The
best values of the X_ are such that 3x73X =0, for all the X .
For the particular case of electric birefringence, (ﬁ is approximately
constant for all the xj (although this is not generally true for photon
counting - e.g. fluorescence depolarization anisotropy - experiments)

and the minimization condition becomes

3F _
X0
(111)
where
n
2
F = Z {xj - gj} (111b)
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In the case of a two-term birefringence decay, the minimization
is said to be 'non=linear' in that the data are to be fitted to a
function which is the sum of a product of terms consisting of an
ad justable parameter (i.e. a pre-exponential factor) with another
function of another adjustable parameter (i.e. a decay constant or
relaxation time). In order to evaluate BF/BXm for a current estimate
for the parameters Xm, the solution either has to be linearized using
a Taylor expansion as outlined by Jost & 0'Konski, or alternatively, a
quadratic or quasi-Newtonian procedure can be employed (Gill & Murray,
1976)., In this latter case, the parameters Xm are iterated until the
minimum in F is found., Gill & Murray's algorithm is particularly
attractive in that upper and lower limits for the variable can be
specified and included as external constraints. A problem with the
least squares technique however is that the method is very sensitive to
subsidiary minima in X2 (or F) leading to false 'best parameters',
even for data of very high precision. The presence of these subsidiary
minima can often be detected by repeating the analysis for a series of

different initial guesses of the adjustable parameters.

4.1,3, Fourier Transform Solution of the Laplace Integral Equation

The birefringence An{t) = S(t) is written as a Stiel jes integral:

L]

Il -6811: n " t
Ae = Z A.e = J exp(-At)dh(A)
1

o]

S(t) =

He~13

(442

where h( A ) is a step function, i = +,= and A = 66, .
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The right hand side of equation (112) can be rewritten in the form
of a Laplace Integral:

oo

S(t) = J exp(-At)g(A)dx
° (113)
where g()) represents a sum of Dirac delta functions. A plot of
g(2) versus X will give a frequency spectrum with peaks; the centre
of each peak corresponds to a specific decay constant, and the height
of the peak is proportional to the value of the pre-exponential factor

y

A;+ s transform A= eY and t = e, Then

o«

s(e™) = J exp[-e XV 1gce V) Vay

-0
(114)
Multiplying by.ex:
e® s(e¥) = J exp[—e(x-Y)]e(x'y)g(e-y)dy
- &
(115)
Taking the Fourier Transform of the left hand side of (115)
F(u) = . J e* S(exjeiuxdx
(116)
Thus
1 & L, E
F(u) = —= J ; J exp[-e 1) geVyay | Lexplius + y)lds
var 0 L0

(117)
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with s = x = y. Rearranging

1 - ;
F(u) = /5;- J g(e y)exptluy)dy. J exp(—es)esexp(ius)ds
- - (118)
Now, if we compare equation (113) with equation (114):
gle™ydy = B ay
(119)

Thus if we obtain g(e™) as a function of y, using sguation (119)
this will be equivalent to a plot of g(A)/A as a function of A .
The right hand side of equation (118) is the product of the Fourier

Transform, G(u) of g(e”’) and the Fourier Transform, K(u) of exp(-e®).

Thereforse
F(u) = V2 G(u) K(n)
(120)
i.e.
_ /1 F
G(U) = E K(U)
(121)
Taking the inverse Fourier Transform of G(n):
s - g | R
(122)

K(u) can be evaluated anmalytically in terms of the complex I' function:

K@ = /5 TQ+ iy

(123)
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The method therefore has four basic steps:
(1) Evaluate the Fourier Transform of the data (equation 116)
(ii) Divide by the complex I function (equation 123)
(iii) g(e-y) as a function of y is found by using the inverse Fourier
Transform
(iv) A plot of g(A)/A is thus obtained as a function of A
The advantage of this method is that an initial choice as to the

number of exponential terms to be fitted is not reguired.

4,1.4. Dther methods of analysis, previously used for deconvoluting

Fluorescence decay curves

0'Connor, Ware and Andre (1979) have recently compared methods for
deconvoluting both one and two term exponential fluorescence decay curves
(sections 1.5.4, 3.3.2) - methods which could be equally applicable to
corresponding birefringence decays. The methods chosen were
(i) Non=Linear Least Squares
(ii) Method of Moments
(iii) Laplace Transforms
(iv) Method of Modulating Functions,
(v) Exponential series method
(vi) Fourier Transforms
They discovered that all six methods were satisfactory for anmalysing
undistorted one - component data, but that the least squares method was
most suitable when distortions are present. For resolving two closely
spaced terms (9.5ns & 11.5ns) in a 2-term undistorted decay only the least
squares method and the method of modulating functions proved satisfactory.

They thus concluded that the non-linear least squares iterative method
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was the technigue of preference for the analysis of simple decay laus.

4,2, Choosing the best algorithm: computer simulation

Following the work of Jost & 0'Konski (1978) and 0'Connor, Ware &
Andre (1979), the non-linear least squares iterative and possibly the
Fourier Transform Solution of the Laplace Integral Equation methods
seemed to be the best available methods for resolving a 2=term
exponential birefringence decay. I attempted to test for myself these
methods by assuming three proteins of known (tri-axial) dimensions and
hence axial ratios (a/b, b/c), assuming a swelling ratio (Vs/;) = 1,3,
and v = .73 (typical for globular proteins). From these values the
molecular weight, viscosity increment, R-function, 6+ functions, intrinsic
viscosity and hence decay constants o, could be prad;ctad (Table 14). Ue
then assume pre-exponential factors AE, AR', of, respectively, 0.07 and 0.05°
radians taken from a typical initial birefringence GEAL + Al) of 0,12
radians (Krause & 0'Konski, 1959) and hence the unperturbed decay curve
for each simulated protein can be given, The actual individual values for
Al are not significant in the analyses, except when they differ by several
c;aers of magnitude (see section 4,5). One then places simulated
experimental error on each of 100 data points for the curves, using a
computer normal pseudo-random number generator, and, first of all assuming
no errors in the molecular weight or intrinsic viscosity, investigate how
much error in the data points is tolerable, before each algorithm fails to
give back the correct decay constants and hence axial ratios, within
reasonable limits. The algorithms would then be tested for errors in the

intrinsic viscosity and molecular weight. Figure 40 illustrates such a

mock experimental decay curve with 0.1 degree standard error (about the
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current availabls experimental precision - B., Jennings & V. Morris,
private communication) on each of 1000 data points, for Protein 1
[true (a/b, b/c) = (1.5, 1.5)]. 1In the analyses the pre-exponential
factors AL are of course regarded as unknown variables.

4,3 Non-Linear Least Sgquares Iterative Method

The gquasi-Newtonian guadratic method for minimizing any functioen
(i.e. in this case, the sum of the squares of the residuals F) given
by Gill & Murray (1976) and incorporated in the UK NAG Mk.VI subroutine
ED4JAF was used. In this algorithm the user, besides supplying the
subroutine for calculating the value of F at any point X, has to supply
fixed upper and lower bounds on the independent variables X1, XZ,
ceseseany Xm. This routine was incorporated in the FORTRAN IV program
given in Appendix 1V, as Program 5., This program generated its ouwn
hypothetical decay curve with normal (Gaussian) pseudo-random error
generated on each data point (using NAG routine GOSADF), the amount
specifiable by the user. The program attempted to retrieve the decay
constants, hence the 6+ functions (from the user-specified molecular
weight and intrinsic qucusity) and hence the axial raties (a/b, b/c)
of the general tri-axial ellipsoid. Owing to the problem of the presence
of the danger of the routine'Falling into subsidiary minima as mentioned
by Jost & O'Konski (1978) - see section 4.1.2., = it was necessary to
repeat the method for a large number (30) of initial guesses. In fact
the program was written to generate its own thirty different initial
guesses by using "DO" loop between user specifiable initial guess limits.

Unfortunately, even data as accurate as .001 degree standard error on

each data point (about 2 orders of magnitude greater than the current
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experimental precision) failed to give back the correct (a/b, b/c)
within reasonable limits, and even data of machine accuracy (14
significant figures) did not generate the exact value of (1.5, 1.5),

as Figure 41 illustrates.

4.4, Fourier Transform Solution Method of the Laplace Integral

Equation Method

4,4,1, Cut-off Errors

In order to use this method outlined in section 4.1.3., the
integrals involved in taking the Fourier Transform of the data
(equation 116) and in taking the inverse Fourier Transform (equation 122)
have to be solved numerically. Unfortunately, the integrals extended
from -« to += § with real data there exists a finite cut-off time, tD
or equivalently Xge Cut-off errors tend to increase the height of the
error ripples in the final results, For equation (116), if we choose a
cut-off too short for Mo there is a loss of resolution of the component
peaks. 0On the other hand, if we choose a cut-off in g too long then
the cut-off at x  causes the amplitude of the error ripples to increase;
uo has to be varied therefore to obtain the optimum resolution for a

given data set.

4,4,2, Numerical Integration

Following Gardner gt al (1958), each value of S(t) was multiplied
by the current value of t to give exs(ex) (equation 115)., Whereas t
ranges from 0-+«, x ranges from —» to +w, thus we can split the integral

in equation (116) into symmetric and anti-symmetric parts:



129,

X
Q
F(u) = %J [S7C) + §"(-x0]e M ax
0
(124)
Therefors
X
0
1 * *
F(w) =/§F j {[S (x) + S (-x)]cosux
0
+ i[S*(x) - §*(-x)]sinux }dx (125)

giving real and imaginary parts for F(u), i.e., Fo & F_. K{u) can be
similarly split into real & imaginary parts KC & KS. Equation (121) thus

becomes:

/T Fc + iFS ; [Fi + iFS)(Kc - iKS)
Gw) =/5 -

K + ik K+ K*“
C S c S
(126)
and the inverse transform (122) becomes
u ; :
ey = 2 ° Fe * FJ X, + 1K) (cosyu - isinyw)du
& om KZ+ K2 yu ¥
(127)

where g and -p, are the cut-off values for u, Since all odd values

vanish,
o 1 Yo ( K+ FK F K, =~ FK
gle™”) = v J % —X T cosym + -—12:7;7§;—— sinyn pdp
o]

(128)
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The numerical integrations (125) and (128) are solved using the
NAG routine DO1GAF. The value of the complex I' function needed for
calculating Kc and Ks was deduced using a routine given by Lucas & Terril
(1970). As with the non-linear least squares iterative method, the
program (Appendix IV Program 6) generated its own synthetic data using

NAG normal pseudo=-random number routines GOSADF & GOSBBF.

4.4.3- Results
The program was firstly checked by applying it to the case first

considered by Gardner et al for a single exponential decay, viz.

$(t) = 100 ¢ 9-92¢

assuming data of machine accuracy (i.e. no perturbation routine
included). The retrieved )\ from Figure 42 is ,021, in close agreement
with Gardner et als value, The data was taken at logarithmic intervals
(corresponding to equal linear intervals in x). The algorithm was then
applied to the two term exponential decay curve for Protein 2, Houwever,
even with data of machine accuracy and taken at logarithmic intervals

in t (impossible to obtain in practice for our particular case) the
retrieved values for li and hence the decay constants was poor and varied
with the cut-off values for u, as Figure 43 and Table 15 shows. When
normal pseudo-random error of .001 deg was applied to the data points,
no resolution was possible for all values of Moo @s Figure 44 clearly
demonstrates. We thus conclude this method to be of little use for our

case of interest.
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4,5, A new R-Constrained Non-Linear Least Squares Algorithm

Owing to the inadequacy of the other treatments for resolving a
two-term exponential birefringence decay into its component relaxation
times (or decay constants), particularly for glebular proteins (close
decay constants), I have now developed a new R-constrained least sguares
algorithm. If the R-function line solution (3.3.1), which can be found
from the ratie of the sedimentation regression coefficient ks to the
intrinsic viscosity [n], is included in the least sgquares algorithm (4.3)
as a constraint, then the problem is effectively reduced from one of four
independent variables (Q+, 6_s Al A') to one of three (a/b, Ai, At).

The solution is constrained to lie on the R-curve, thus a given estimate
for a/b will necessarily give a 'constrained' value for b/c; the computer
program can then calculate the values for 5+ and §_ corresponding to this
estimate, hence the decay constants (using also the values for[n] , Mr -
equation 107), the decay curve and finally the sum of the squares of the
residuals (SSR) between the computer points and the experimental curve.

By iterating along this R—curve for a/b and the two pre-expcnential factors
A;, the best estimate for (a/b, b/c) can be found from the minimum value
u; the 5SR.

The constraint of the R=curve was included in the algorithm (Program 7
of Appendix IV) for the three simulated proteins considered previously
by use of the Leicester University Computer Library routine EOILF1, a
listing of which is given towards the end of Program 7. The user specifies
the coordinates of knots in the curve (see Figures 45, 46 & 47), or |

alternatively, the whole curve digitised, and the routine interpolates

between these points using a cubic polynomial ('spline')} fit (K. Brodlie,
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private communication). In the main program, normal (Gaussian) random
error of 0.1 degrees on each of the 100 linearly separated data points
was supplied using the pseudo random number routines mentioned
previously. The magnitude of this error corresponds to that expected
from current experimental precision (B.R. Jennings, V. Morris, private
communication). It was found in pilot runs that the danger of the
algorithm falling into subsidiary minima, as present for the unconstrained
case (section 4.3.) was no longer significant., The number of initial
guesses was thus reduced from thirty to three to save on Computer timej
the best estimates were generally the same for all three initial guesses
(except those marked with an asterisk in Tables 16, 17 & 18). The values
for (a/b, b/c) retrieved did however depend on the cut-off time specified
for the decay curve., If there were no error in the data points then very
long cut-off times would be desirable, since this region is dominated by
the longest relaxation time (or shortest decay constant, e_). However,
the effect of a given absolute error is more pronounced the lower the
birefringence signal,

The optimum cut-off time, and hence the best value for (a/b, b/c)
was found by repeating for eight different streams of normal random data,
specified by the UK NAG Mk VI routine GOSBAF(0.N), where N represents the
stream number of the random dataj the optimum cut-off time for each decay
curve was then determined by finding the best standard deviation ef the
a/b's from the eight streams for increments of Sns in the cut-off times.
The values for the corresponding best mean value for a/b (and hence b/c)
together with the corresponding standard error for the eight streams of
data could then be found (Tables 16a, 17a & 18a).

This procedure was then repeated allowing for 1% experimental error
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in the R-curves (Tables 16b,c, 17b,c, 18b,c). If the points corresponding

to <(a/b, b/c)> +op

then those of the <(a/b, b/c)> =% regions of allowed values for

are joined together for each of the R-curves, and

(a/b, b/c) could then be found (Figures 48, 49 & 50). The mean values
agree very closely with the true values (Table 19). The algorithm was
then tested for the effect of experimental errors in the intrinsic
viscosity (* 1%) and molecular weight ( ¥1.4%). These were found to be
not significant (Table 20); indeed, the molescular weight can now be found
precisely from the results of sequence analyses. Finally, the algorithm
was tested for different initially assumed uélues for the pre-exponential
factors Al and A' (Table 21). Again, these were found to have no
significant effect on the results; even for pre-exponential factors
differing by two orders of magnitude, though the retrieved A' was poor,
the retrieved a/b was in close agreement with the other values.

Once the value for the axial ratios (a/b, b/c) has been found for a
particular protein, it can be combined with the swollen volume of the
protein, if known, to determine the axial dimensions. In Table 22 a '"model
dependent™ (section 1.7.1) estimate for Ue has been found for each of the
three simulated proteins we have considered by back substitution of the
mean values of (a/b, b/c) determined from the analysis above into equation
(8) for the viscosity increment, and again the agreement with the initially
assumed values (Table 19) is excellent., If the model dependent values of
V, are then combined with the values for (a/b, b/c), the semi-axial
dimensions a,b,c for the three proteins considered are found to be (R):

Protein 1: 45,00, 29,98, 20.01 (45.0, 30,0, 20,0)

Protein 2: 42,28, 25.59, 19.61 (42.5, 25.0, 20.0)

Protein 3: 43.11, 33,58, 19.81 (42,5, 34.0, 20.0)

again, in excellent agreement with the initially assumed (bracketed) values.
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4,6, Some Practical Paoints

In applying these equations and algorithms to real protein and other
macromolecular solutions several important factors must be taken into
consideration:
(1) Two or more decay caonstants can also arise if the system is
polydisperse. It is therefore sssential that the solution be rendersad
monodisperse by, for example, gel filtration techniques.
(2) It has now been well established that the single exponential decay
constant previously resovable from the birefringence decay of monodispafse
protein solutions shows a concentration dependence (Riddiford & Jennings,
1967), and it was therefore necessary to determine its valus at several
concentrations and then extrapolate to infinite dilution. One must
naturally assume therefore that the two decay constants for the decay of
a monodisperse solution of asymmetric ellipsoids also show a concentration
dependsnce, and hence must be extrapolated to infinite dilution. On the
other hand, because of the constraint in our algorithm that they must
correspond to 5+ and 5_lina solutions that intersect with the R~curve, the
values for the decay constants ars such that they are not the 'true' descay
constants for each particular concentration but are closer to the infinits
dilution values. Since the extrapolation procedure must thersfore be
empirical the best estimates for a/b at particular solute concentrations
rathar than these 'damped' decay constants may be extrapolated to infinite
dilution; once the extrapolated value for a/b has been found the correspond-
ing value for b/c can thus also be found from the R-curve.
(3) The requirement on the precision of the electric birefringence apparatus
is not only in producing transient decays to a precision of 0.1 degres on
gach data point but alsc the availability of response times (i.s. the finite

time it takes for the orienting electric pulse to be switched off) of about
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an order of magnitude less than that of the faster relaxation time

Adequate response times arse now available (williams, Ham & Wright, 1976)
however with apparatus that uses a laser light source, cable discharge
generator and a memory oscilloscope, giving a response time of ~ 5ns.

(4) In the above analysis it has been shown that greater accuracies in
obtaining the axial ratios can be cbtained if the optimum cut—off time

for the decay is found. In our simulations this was achieved by

averaging over several streams of random data; this corresponds in practice
to taking several decays of the same preparation. Different samples of

the same preparation should be used because of the danger of denaturing

the protein by continually pulsing through high electric fields (temp-
grature sffects).

(5) It has also been assumed that the R function can be measured to a
precision of ~ #1%. Since B values in an s_ versus concentrat;on plot can
be determined to within~ X,2%(Squire, 1578), the ks value can presumably be
measured to within 1% (as, from equation 58, it is approximately a
function of (sc/s) X ccncentration-1). The intrinsic viscosity [n] can
also be measured to within ~X1%¢, the limiting factor here being the accuracy
to which the flow times can be measured. The error in R will thus be of
the order of 1% after taking into consideration that any systematic errors
in measuring absolute solute concentrations will cancel in the ratio

ks/[n] (Rowe, 1977).

(6) Finally, it should be pointed out that because of polarisation effects
on the electrodss and also the danger of denaturation due to heating effects
mentioned in (4), solutions of low ionic strength (<0.01M) generally have
to be used. This apparently prevents the investigation of less soluble

materials. On the other hand, an interesting new method is being developed
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at Brunel University by Professor B. Jennings and his co=workers in

which an ultrasonic field rather than an electric field is used to
initially orient the macromolecules before the decay is cbserved. This
"acoustic birefringence™ (Ballinger & Jennings, 1979) method does not
suffer from the problems of electrode polarisation and denaturation
associated with ionic strengths >.01M for the electric birefringence case,

allowing the possibility for the investigation of less soluble materialse.
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Table 14, Assumed and derived characteristics of three hypothetical

globular proteins

Protein 1 2 3

ASSUMED VALUES

Characteristic
a,b,c | 458, 30R, 20R 42.58,25R,208 42.5R,348,208
v 0.730 ml/gm 0.730 ml/gm 0.730 ml/gm
US/U 143 1.3 148
DERIVED VUALUES
Characteristic
a/b,b/c 1.50,1.50 1.70,1.25 1.25,1.70
Gs 0,949 ml/gm 0.949m1/gm 0.949m1/gm
swollen molecular )
velume 1.1309732x10~ Zcme  0.89011784x10 Zcm°  1.2105602x10~  Jems
V = 4mabe
« 3

Anhydrous molecular
volumeg _ 0.8699793x10-1gcm3 0.684786x10-19cm3 8.9312001x10-1gcm3
v (=(0/,) v,)

Molecular weight

n (=(n/5) V) 71,744 56,510 76,853
v 2,892 2.870 2.840
[n] (=NAUev/Nr) 2.75 ml/gm 2.72 ml/gm 2,695 ml/gm
R 1.479 1,482 1,496
eiad , efEd 0.163, 0.116 0.171, 0.115 0,155, 0.125
3, A 2.821, 2.016 2.943, 1,982 2.645, 2.125
Decay eomstants™  5.g153835x10%sec]’  7.7660465x10%sec;  5.1872430x10°sec™
0, = 2 e By 4.1564612x10%sec™  5,2290121x10%sec™!  4.1674860x10%sec™]
a] r . : ) i
Relaxation times 28,6596ns, 21.4609ns, 32.1301ns,
T, =V/8e, 40.0982ns 31.8734ns 39,5921ns

* T = 293K, n_ = 0.01 gm T
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Table 15, Retrisved dscay constants for varying values of Mo
=y =y - " o g
¥4 Ys Aq=e 1 A2=e 2 ELx1ﬂ 6sec ! 6_x10 6sec 1
11.5 3.13 | 3.55 0.04372 | 0.02872 7.286 4,787
11.6 3,00 | 3.50 0.04579 | 0,03020 B.292 5.033
1.7 2,94 | 3.45 0.05287 | 0.0317S 8.811 5.291
12.0 3,14 | 3.72 0.04328 | 0,02423 7.214 4,039

True value for ©_ = 7.7660465 x 502 aag =

-1

True value for © 5,2290121 x 106 sec
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Table 16. Determination of the optimum cut-off time for Protein 1.

True (a/b, b/c) = (1.5, 1.5)

(a) No_assumed error in R

Cut=off 80ns 100ns 110ns 115ns 120ns 140ns
time

a/b a/b a/b a/b a/b a/b
Stream 1 1,580 1,534 14513 1,503 1.493 1.454
Stream 2 1.946 1.785 1,692 1.654 1.619 1.497
Stream 3 1,591 1.512 1,483 1.468 1.452 1.392
Stream 4 1.644 1.487 1.425 1.396 1.367 1.249
Stream 5 1.623 1.480 1.426 1.401 1,377 1,287
Stream 6 1.186 1.275 1.303 1.315 1.326 1.364
Stream 7 1.573 1.645 1.678 1.694 1.710 14772
Stream 8 1.716 1.623 1.550 1.575 1.562 1.514
Mean 1.6074 1.5426 1.5138 1.5008 1.4883 1.4411
o (SD) 0.209696 0.148967 0.133899 0,132475 0.134403. 0.163491
o (SE) 0.07414 0.05267 0.04734 0.04684 0,04752 0.05780

o(SD) = Standard Deviation ; o(SE) = Standard Error

different answers for different initial guesses

Optimum cut=off time = 115ns
Best estimate for a/b = 1,501 (*.047)

Corresponding estimate for b/c = 1.498
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(b) +1% assumed measured srror in R

Cut—off 110ns 115ns 120ns 125ns 130ns 135ns 140ns
time

a/b a/b a/b a/b a/b a/b a/b
Stream 1 1.546 1.534 1.523 1.511 1.500 1.489 1.478
Stream 2 1,837 1.735 1.679 1.633 1.594 1.557 1.522
Stream 3 1.510 1.492 1.474 1.457 1.440 1.423 1.406
Stream 4 1,439 1.406 1.374 1.342 1.310 1.278 1.244
Stream S  1.442 1.414 1.387 1,361 14337 1.312 1.289
Stream 6 1.312 1,325 1.340 1.349 1.360 1.370 1.380
Stream 7 1.816 1.871 1.847 1.840 1.878 1.893 1.909
Stream 8 1,643 1.624 1.606 1.590 1.575 1.561 1.548
Mean 1.5681 1.3501 1.5288 1.5104 1.,4992 1.4854 1.4720

o (sD) 0.185700 0;183780 0.174243 0,173033 D0.,186398 0.195406 0,206181

o (SE) 0.06565 0.06495 0.06160 0.06118 0.06550 0,06909 0.07290

Optimum cut=off time = 125ns
Best estimate for a/b = 1.510 (*.061)

Corresponding estimate for b/c = 1.400
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(c) -1% assumed measured error in R

Cut=off 110ns 115ns 120ns
time

a/b a/b a/b
Stream 1 1.494 1.485 1,476
Stream 2 1.644 1.616 1.588
Stream 3  1.468 1.454 1.440
Stream 4 1,419 1,392 1.366
Stream 5 1.418 1.395 1.373
Stream 6 1,300 1.311 1.321
Stream 7 1.626 1.638 1.649
Stream 8 1.561 1.549 1.537
Mean 1.4913 1.4800 1.4688
o (SD) 0.115922 0.114924 0.115761
o (SE) 0.04098 0.04063 0.04093

Optimum cut—cff time = 115ns
Best estimate for a/b = 1.480 (}.041)

Corresponding estimate for b/c = 1.611
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Table 17. QDetermination of the optimum cut-off time for Protein 2,
True (a/b, b/c) = (1.7, 1.25)

(a) No assumed error in R

Cut=off 85ns 90ns 85ns 100ns 105ns 110ns 120ns
time

a/b a/b a/b a/b a/b a/b a/b
Stream 1 1,709 1.691 1.675 1.659 1.644 1.630 1.603
Stream 2 1.963 1.926 1.872 1.777 1.716 1.666 1.579
Stream 3 1.670 1.645 1.622 1.600 1.578 1.558 1.520
Stream 4 1.602 1.561 1,523 1.486 1,452 1.418 1.351
Stream 5 1,600 1.566 1.534 1.505 1.478 1.453 1.408
Stream 6 1.482 1.496 1.509 1.521 1.533 1.544 1.566
Stream 7 1.924 1.924 1.923 1.923 1.923 1.923 1.922
Stream 8 1.847 1.803 1.771 14745 1.723 1.703 1.669
Mean 1.7246 1.7015 1.6786 1.6520 1.6309 1.6119 1.5773
o (SD) 0.170801 0,166408 0,161588 0.154362 0.155373 0.159776 0.173689
o (SE) 0.06039 0.05883 0,05713 0,05458 0,05493 0.05649 0.06141

Optimum cut=off time = 100ns
Best estimate for a/b = 1.652 (% ,055)

Corresponding estimats for b/c = 1.305
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Cut=off 75ns 80ns 85ns 90ns 95ns 100ns 108ns
time

a/b a/b a/b a/b a/b a/b a/b
Stream 1  1.856 1.856 1.856 1.820 1.821 1.767 1.834
Stream 2  1.856 1.856 1.856 1.856 1.856 1.856 1.856
Stream 3 1.856 1.821 1.791 1.732 1.691 1.6358 1.628
Stream 4 1.843 1.728 1555 1.599 1.551 1.508 1.467
Stream 5 1.834 1.716 1.655 1.608 1.568 14532 1.501
Stream 6 1.471 1.492 1.511 1.528 1.544 1.560 1.575
Stream 7 1.856 1.856 1.856 1.856 1.856 1.856 1.856
Stream 8 1.856 1.856 1.856 1.856 1,856 1.856 1.856
Mean 1.8035 1.7726 1.7545 1.7319 1.7179 1.6991 1.6841
o (sD) 0.134604 0.127668 0.131819 0.135561 0.145962 0,153037 0.163378
o (SE) 0.04759 0.04514 0.04661 0.04791 0.05161 0.05411 0.05776
Optimum cut=off time = 80ns

Best estimate for a/b = 1.773 (% .045)

Corresponding estimats for b/c

= 1,0875
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Cut=cf'f B80ns 85ns 90ns 95ns 100ns 105ns
time

a/b a/b a/b a/b a/b a/b
Stream 1.670 1.656 1.643 1.630 1.617 1,605
Stream 1.936+ 1.861 1.799 14749 1.705 1.665
Stream 1.648 1.628 1.608 14589 1.570 1.552
Stream 1.614 1.576 1.541 1.507 1.475 1.444
Stream 1.606 1.573 1.543 1.516 1.490 1.466
Stream 1.452 1.466 1.478 1.489 1.499 1.509
Stream 7 1.815  1.842  1.870  1.902  1.9367  1.9367
Stream 1,759 1.737 1.716 1.698 1.681 1.666
Mean 1.6875 1.6674 1.6498 1.6350 1.6216 1.6054
o (sD) 0.147596 0,137488 0.,136111 0.142556 0,153928 0.157728
o (SE) 0.05218 0.04861 0.04812 0.05040 0,05442 0.05577
t Upper limit (= b/c = 1.0)
Optimum cut=off time = 90ns

Best estimatse for a/b = 1.650 (*.048)

Corresponding estimate for b/c = 1.3905
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Table 18. Determination of the optimum cut—off time for Protein 3.

True (a/b, b/c) = (1.25, 1.7)

(a) No assumed error in R

Cut—off 80ns 100ns 105ns 110ns 115ns 120ns 140ns
time

a/b a/b a/b a/b a/b a/b a/b
Stream 1 1.367 14315 1.303 1.291 1.278 1.266 1.215
Stream 2  1.881 1.587 1.547 1.510 1.476 1.442 1.313
Stream 3  1.388 1.301 1.281 1.263 1.240 1.219 1.119
Stream 4 1.464 1.285 1.244 1.200 1.151 1.089 1.001
Stream 5 1,448 1.278 1.239 1.200 1.157 1.108 1.000
Stream 6 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Stream 7 1.314 1.393 1.409 1.424 1.439 1.453 1.505
Stream 8 1.514 1.421 1.402 1.385 1.370 1.354 1.297
Mean 1.4220 1..3225 1.3031 1.2841 1.2639 1.2414 1.1813
o (SD) 0.243637 0.165850 0.160554 0.158626 0.161019 0.168224 0.184692
o (SE) 0.08614 0.05864 0,05676 0.05608 0.05693 0.05948 0.06530

Optimum cut—off time = 110ns
Best estimate for a/b = 1.284 (X .056)

Corresponding estimate for b/c = 1.695
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(b) +1% assumed measured error in R

Cut-off 105ns 110ns 115ns
time
a/b a/b a/b

Stream 1 1,319 1.306 1.293
Stream 2 1.618 1.562 1.516
Stream 3 1.294 1.272 1.249
Stream 4 1,247 1.199 1.145
Stream 5 1.245 1.202 1.155 )
Stream 6 1.000 1.000 1.000
Stream 7 1.444 1.462 1.481
Stream 8 1,431 1.412 1.394
Mean 1.3248 1.3019 1.2791

o (sD) 0.181404 0.,176485 0.178272
o (SE) 0.06414 0,06240 0.06303

Optimum cut=off time = 110ns
Best estimate for a/b = 1.302 (X .062)

Corresponding estimate for b/c = 1.5395
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(c) =1% assumed measured error in R

Cut=off 105ns 110ns 115ns
time
a/b a/b a/b

Stream 1 1.294 1.283 14271
Stream 2 1.511 1.481 1.452
Stream 3 1.275 14257 1.238
Stream 4 1,246 1.206 1.163
Stream 5  1.240 1.204 1.165
Stream 6 1.000 1.000 1,000
Stream 7 1.387 1.400 1.413
Stream 8 1.385 1.370 1.355
Mean 1.2923 1.2751 1.2571
o(SD) 0.149250 0.147794 0.149222
o (SE) 0.05278 0.05225 0.05276

Optimum cut=off time = 110ns
Best estimate for a/b = 1.275 (¥ .052)

Corresponding estimate for b/ec = 1.764
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Table 18. Mean values for the retrieved axial ratios compared

with the real values

Retriesved
a b -
(2 2)

Real
(2 2)

B c

Protein 1
Protein 2

Protein 3

(1,501, 1,498)
(1.652, 1.305)

(1.284, 1.695)

(1.50, 1.50)
(1.70, 1.25)

(1.25, 1.70)
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Table 20, Effect of experimental errors in the intrinsic viscosity

and molecular weight

(and hence the product [n]. Hr used in calculating the decay constants

- cf Table 14 and equation 108)

Assumed error in [n]

n n n M
r

t149 total error ~ 1.7 % (calculated
+1,4% from formula given in Paradine & Rivett
-* (1960))

Results are for Protein 1, cut=off tims = 115ns, % 0.1% standard error

on each of the 100 data points

Stream no
* No error

afd:::dom - 1.7% sk + 1.7%
1 1.493 1,503 1.520
2 1.638 " 1,654 1679
3 14455 1.468 1.487
4 1.374 1.396 1.424
5 1.383 1.401 1.425
6 1.305 1.315 1.333
7 1.695 1.694 1.704
8 1.566 14575 1.593
mean a/b 1.4886 1.5008 1.5206
GSD 0.136305 0.132475 0.130253
OSE 0.04819 0.04684 0.04668

= standard deviation

Q
il

standard error



150,

Table 21. Effect of using different initially assumed values for

the pre-exponential factors A'

L

#*
Protein 1, Cut off time = 100 ns, 0.1 s.e. on each of the 100 data paoints

Assumed Retriesved
1 t t t
AL A a/b A, A
0.06 0.06 1.683 0.057 0.064
0.07 0.05 1.674 0.085 0.055
0.09 0.03 1.660 0.083 0.038
0.11 0.01 1.664 8.099 0.021
0.119 0.001 1.644 0.109 0.012

*The data for this table were obtained after the UK NAG Mk VI routines
had been updatéd to Mk VII; the new random number routines corresponding

to GOSADF & GOS5BAF in Mk VI are GOSCAF & GOSCBF



Table 22, Comparison of modsl dependent estimates for Ua with
the real values
* 3
Retrieved Model-dependent Real V_ (em™)
a b 3

( il ) Vg (em™) (cf Table 14)
i ' -18 -19

Protein 1 (1.501, 1.498) 1.131 x 10 1,131 x 10
Protein 2 (1.652, 1.305) 0.889 x 10”12 0.890 x 107 °
Protein 3 (1.284, 1.695) 1,202 x 10712 1211 x 10712

*calculated by determining the value of v corresponding to (-g-, -’9-)

c

and then back substituting into the equation v = [n]Mr/NAUs,

where [n] is in ml/gm

151.
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2] S MIN SAMPLE I¥
@ 50 MIN SAMPLE I¥

0.0l

T=11.5 pusec

0.001

0 20 40
TIME, u sec

Figure 39. Birefringence decay (expressed in radians) in Helix Pomatia

hemocyanin solutions. The triangles represent the difference

between the tangential curve (long relaxation time) and the

experimental points. (From Pytkowickz & 0'Konski, 1959)
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PROTEIN 1
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0.08 | J

(RADS)
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Figure 40, Synthetic two-term exponential electric birefringence decay curve

assuming a_standard error of ¥ 0.1° on each data point.

Relaxation times assumed: 28.66ns, 40.10ns
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Figure 41, Plot of the R, 5+ and §_ values obtained from the non-linear least

sgquares analysis assuming birefringence data of machine accuracy
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Bo=6.0

JANVA

v\/v VA

ssnsasanssnnses

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 40 45 50 5.5 6.0 6.5

Yy=-InA

Frequency spectrum of X (=1/relaxation time) for a single

exponential decay and By = 6.0, assuming decay data of machine

accuracy (14 figures). The position of the highest peak

corresponds to a value of ) of ,021, in agreement with the

initially assumed value of 0,02




Figure 43 (I - VI)

Effect of increasing u to determine best resolution of the frequency
spectrum corresponding to the decay for Protein 2, for 140 logarithmically

increasing data points of machine accuracy (14 figures)
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Figure 44 (I - VI)

As for Figure 43 but for data of .001° standard error on each of the

140 logarithmically increasing data points
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Figure 45. Knots in the R curves for specification in the R = constrained

lsast sguares analysis (Program 7) for Protein 1
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Figure 46. As for Figurs 45 but for Protein 2
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Figure 47. As for Figure 45 but for Protein 3
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True (a/b, b/c) = (1.5, 1.5)

Figure 48,

2.4

The area marked by dots represents the allowed band of retrieved

axial ratios determined using the new R = constrained least

squares algorithm for Protein 1, Simulated experimental error

of ¥ 0.1° standard error on each data point for the electric

birefringence decay curve was assumed.
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I T T 1 1 T

True (a/b, b/c) = (1.7, 1.25)

Figure 49. As for Figqurs 48 but for Protein 2
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2.0

True (a/b, b/c) = (1.25, 1.7)

Figq;e 50, As for Figure

48 but for Protein 3




-CHAPTER S

Concluding Remarks




168.

In this study an extensive review of all the possible shape
functions available for modelling a biological macromoleculs in
solution in terms of an ellipsoid model with the restriction of two
equal axes has been given, thus updating the classical reviews of
Edsall (1953) and Tanford (1961). It was concluded that the most
suitable shape parameter (particularly for axial ratios less than 20:1)
was the R parameter which can be determined from the ratio of the
sedimentation regression coefficient, ks to the intrinsic viscosity, [n] .
A word of warning should perhaps be given out here in that the ks value
found from fitting sedimentation coefficient vsersus concentration data
either to the general equation (60) or to the approximate linear equation
(58), is the value based on particle migration relative to the solvent,
whersas the [n] values ars normally measured to solution density (Tanford,
1955), The value of kS must therefore be corrected to solution density,
and this can be achiesved simply by subtracting the value of the partial
specific volume, v (Rowe, 1977) since this latter can be eguated to the
reciprocal density of the soluts, an assumption reasonably accurate for
proteins and possibly for nucleic acids (Pearce gt _al, 1975). It is also
now possible to sstimate a value for ks direct from a knowledge of ths
sedimentation coefficient, the molecular weight and v (Appendix VI).
Despite the availability of the R function for determining the 'squiv-
alent hydrodynamic ellipscid of revolution!' for a structure in solution to
a reasonable precision (and also the 1 function for prolate ellipsoids =
Appendix III), it was clear from a perusal of the crystallographic
dimensions given in Table 3 and a comparison of model dependent with model
independent estimates for ;;/G in Table 2, that for many macromolecules

the assumption of two egqual axes on the sllipsoid model is a poor
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approximation to the real structure in solution. This stimulated my
attempts to develop the necessary theoretical and data analysis techniques
so that the restriction of two sgual axes could be dispensed with and the
subsequent research has shown that the more general tri-axial ellipsoid
can now, in principle at least, be successfully employed fer modelling
biological macromolecules in solution.

The first step was to derive an explicit expression for the viscosity
increment v for a dilute suspension of general tri-axial ellipsoids in
overwhelming Brownian motion, based on a model first given by Simha (1940)
and improved by Saito (1951) for sllipsocids of revolution. Although the
assumption of the particles rotating on average with the same local angular
velocity of the fluid has only been rigorously proved so far for ellipsoids
of revolution (Brenner, 1972a), it was assumed that this would be a very
close approximation for tri-axial sllipsoids, particularly for low axial
ratios (<3.0, i.e. the globular particle range). After the derivation of
equation (88) a numerical procedure (involving complicated numerical matrix
invarsions), but based on a full statistical analysis of the angular motion
was made available by Rallison (1978). It was explained in section 2.8. how
the difference in the results predicted by equation (88) and Rallisons
approach was negligible (<.01%) for the globular particle range mentioned
above, and for some particles of higher asymmetry discrepancies of not more
than 1% aross. Rallison has also given a numerical procedure for
calculating the normal stress coefficients in terms of axial ratio; normal
stress effects are howsver second order in the shear rate, thus in order
to measure these coefficients it is necessary to use high shear rates.
However, the assumption of overwhelming Brownian motion with respect to
the shear rats ceases to be valid, and hencs, unfortunately, the normal

stress coefficients cannot be zpplied.
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It was described how the problem of the line solution (i.e. how a
given value for v does not uniguely fix a value for the axial ratios
(a/b, b/c)) could be dealt with by combining it graphically with
translational frictional or rotational relaxation line solutions. I
was able to give the R function for tri-axial ellipsoids and also many
other tri-axial functions whose experimental determination did not requirs
a knowledge of the swollen molecular volume in solution. After a careful
consideration of all these line solutions with regard to giving suitable
intersections, experimental measurability, insensitivity to experimental
error and sensitivity to axial ratio, it was decided that the best approach
for determining a unique solution would be to combine the R line solution
graphically with the 5+ and §_ line solutions, the latter te be determined
from the two electric biresfringence decay constants and the intrinsic
viscosity. |

Unfortunately, this still requires having to resolve the two decay
constants or relaxation times from a two=term exponential birefringence
decay for a homogenecus solution of asymmetric particles. This problem
is notoriously difficult, as reported by Jost & 0'Konski (1978) and
0'Connor, Ware & Andre (1979), particularly for close relaxation times (as
applies to globular proteins). The currently best available methods evident
from these studiss, viz, the non-linear least squares iterative method and
possibly the Fourier Transform solution of the Laplace Integral equation
method of Gardner et al (1959) were tested by exhaustive computer
simulation to see how much error on the data points each could tolerate
before failing to resolve the decay constants within reasonable limits. Ths
Fourier method failed, even for data of machine accuracy (14 figurss). The

non-linear least squares method was found to be unstable dus to the problem
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of subsidiary minima located in the iteration procedure, even for data
of two orders of magnitude more precise than that currently available
from the best instrumentation.

The idea of applying the R function line solution as a constraint in
the least squares analysis was then applied to the three simulated decays
thus effectively reducing the problem from one of four independent variables
(the two pre-exponential factors and the two decay constants) to one of
three (two pre-exponential factors and one axial ratio, a/b). The algorithm
was then shown to be very successful for synthetic data corresponding to
that available from current experimental precision. The problem of the
concentration dependence of the decay constants (or equivalently the
relaxation times) was then mentioned, and the necessity for extrapolating
the values for the axial ratios determined at various concentrations to
" infinite dilution. The need for extrapolating axial ratios is somewhat
conceptually difficult to envisage at first sight, since one would more
naturally extrapoclate the decay constants and then calculate the axial
ratios from them. In the algorithm howsver, 1 havs included the R value
as the constraint - the R function line solution of possible valuss of
(a/b, b/c) is the value applicabls at infinite dilution, thus the decay
constants in the algorithm are constrained to lie on the 'infinite dilution'
curve; hencs none of these values are the true values for the decay constants
at sach particular solute concentration, Any extrapolation procedure is
therefore empirical, whether it be for the decay constants or for the values
of the axial ratio a/b.

Investigation of the theoretical reasons for the concentration
dependence of the decay constants provides however both an interssting and

important field for further work. It has been described (sasction 1.7.1. &
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Appendix IV) how several important results have arisen from consideration
of the concentration dependence of the 'translational! (i.e. viscosity,
sedimentation and diffusion) transport coefficients: for example, in
producing the R function and making available an estimate of the swollen
volume of a macromolecule in solution independent of any model assumed for
the macromoleculs. The analysis of the concentration dspendence of the
decay constants is however much more complicated: Rowe's (1977) theory for
the translational coefficients was derived assuming only hydrodynamic
(i.e. volume flux) concentration effects, viz. solutions of high ionic
strength (>0.1M) and such that electric charge effects (solute-solute
interactions) were not present. The situation is apparently the reverse
when we come to cuﬁsider the decay constants: since we ars dealing with a
rotary macromolecular property, thsre should be no solute volume flux
effects on average giving risse to the hydrodynamic céncantratiun effects
considered by Rows. On the other hand, the current practical restriction
of low ionic strengths for ths electric birefringence probably results in
some solute-solute electric charge effects; the double layer thickness
of charge around a macromolecule in solution is inversely proportional to
the square root of the iocnic strength (Guoy, 1910, Chapman, 1913). For
example, for a macromolecule suspended in a 0.1M NaCl buffer the thickness
nf.the double layer is ~ 1nm, whereas in a 0.001M NaCl buffer, the thickness
is as high as 10nm (Shaw, 1970). There is therefore a grsatser likelihood
of interference between the relaxations of individual macromolecules, the
degree of which one would expect to increase with concentration.

In section 1.6. the techniques of light and low-angle x=-ray scattering
were discussed as an alternative to the hydrodynamic techniques, and stated

how Martin (1964) had given formulae relating the radius of gyration to
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axial ratio for ellipsoids of revolution. Mendelson and Hartt (1980)
have applised rssults from low angle x-ray scattering in terms of a
general triaxial ellipsoid model to the requlatory light chains of
scallop myosin, and determined axial dimensions of 16nm x 4.16nm x 1.26nm.
We also mentioned howsever that the major disadvantage of the scattering
approach was that it is necessary to assume the macromolecule to be of
uniform electron density; this can lead to errors of the order of 3%,
notwithstanding other errors in measurement as the simple calculation
given in Appendix VI1 for a hypothetical spherical macromolecule with a
cavity (based on the slectron microscopy and x-ray diffraction results
for apoferritin - Harrison, 1959) shows.

It is hoped howsver that the results of the research described here
have now made it possible to determine the gross conformation of biological
macromolecules in solution in terms of a general ellipsoid = independent of
any assumptions concerning the internal homogeneity of the macromolecules =
by combining the results of viscosity, sedimentation and electric (or
acoustic) birefringence. There are some macromolecules however that
apparently will never be modelled by an ellipsoid, even tri-axial.

Bovine serum albumin (BSA) is a typical example; McCammon et al (1975)
have attempted to account for a value for B below the theorstical minimum
of 2,112 x 106 (and above the theorstical maximum for R of 1.6 = see Table
2) by assuming its structurs to bs porous with respect to the solvent, but
found the discrepancy was still far too large. With the availabilty of
the tri=axial ellipsoeid model and a compariscn‘hithfEaaéi_iﬁaéﬁéhaéﬁfmgﬂ_
gstimates for the swollen molecular volume,. a classification of proteins
into those which do and those which do not behave as hydrodynamic trie

axial ellipseoids in solution can nouw be made.
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Appendix I Elliptic Integrals used in this study

o oo L

) da g - da _ ) da
% T (aZ + VA’ 0 ®mZ+ e Yo (cZ + M)A

o] o 2.

where A is the positive root of

aZ+ X beexr T I
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Appendix II Illustration of use of the A function (equation 50) by

application to data available for the tryptic subfragments of fibrinogen

It is apparent from Figure 17 that, until the harmonic mean

relaxation time t, can be measured to a precision greater than that

h
currently available (~ £3% at best, assuming no significant internal
rotations of the chromophore or segmental rotations of parts of a
macromolecule relative to other parts), use of A will generally be
restricted to prolate ellipsoidal particles above an axial ratio of

about three.

Unfortunately, there is at present a lack of reliable steady stats
fluordscence depolarization data for macromolecules in this axial rangs.
Use of the function may however be illustrated by application to data
available for the tryptic fragment of bovine fibrinogen. By using a
steady-state fluorescence - depolarization technique, Johnson & [Mihalyi
(1965) reported a harmonic mean relaxation time for fibrinogen of 19515 ns,
a value lowser than the corresponding value for a sphere of the same volume

(299 ns); the value for T_ of the tryptic subfragment was 178 ns, strongly

h
suggesting that the tryptic subfragments had rotational freedom within the
fibrinogen moleculs. Assuming there is still no further intaernal rotation
within the subfragment itself, one can combine this result with viscosity
and molecular-weight data obtained previously by Mihalyi & Godfrey (1963).
Taking M as 95,000#2,000, [n] as (7.18%0.07) ml.g"1 and assuming a

* 5 ns standard error in T A is calculated to be 4.74i0.17 where the

h’
method for calculating the standard error in A is given by Paradine &
Rivett (1960)., This corresponds from Figure 17 to a prolate ellipsoid of

axial ratio 6.830.3 consistent with the estimates of the axial ratio
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derived from four other hydrodynamic parameters, three of which assume

no particle swelling due to solvent association (Table 23)., The

results from electron microscopy studies suggest however that the
subfragments are nearly spherical (Hall & Slayter, 1959); as Mihalyi &
Godfrey (1963) have previously stated, this differencs is probably too
large to be explained by drying effects alons. At least part of this
difference can, however, be possibly ascribed to an apparent discrepancy
between the viscosity data of their Figure 4 with the sedimentation data
of their equation 2; the latter suggests a sedimentation regression
coefficient, ks, of ~ 3.6 (after correction to solution density; Rowe,
1977), whereas the viscosity regression coefficient, kn’ is only ~ 2,5,
Rowe (1977) has shown that the ratio kn/ks is equal to the swelling ratio
Us/ﬁ, where Us is the swollen specific volume in solution. Mihalyi &
Godfrey's (1963) data apparently gives a value for the swelling of less
than 1, indicating the particle to contract in solution, an unlikely
event. Unfortunately, although the pH valuses of the solutions used for
the sedimentation and harmonic mean relaxation time measurements are given
and are near (6.5 and 7.1 respectively), that for the viscosity is not
given, so this is a possible source of error,.

It is hoped that the availability of the new A function will
encourage the production of more reliable data in order to resolve these
difficulties, and also accelerate improvement in the methodelogy so that
Th/TD can be measured with much greater precision, enabling application
of the N function to prolate ellipsoids of axial ratio less than three

and also to oblate ellipsoids.
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Table 23. Hydrodynamic parameters and axial ratios for the tryptic

subfragments of fibrinogen

Hydrodynamic Derived Axial Reference
Parameter Ratio
v 7.8 Mihalyi & Godfrey (1963)
*
"
f/fg T4l
B 9.3 1
*
WA . .
K 'O 5.0 Johnson & Mihalyi (1965)
A 6.8 This study

Assuming no particle swelling due to solvent association
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Appendix III Illustration of use of the I function Seguation 572

by application to data for hemoglobin

The I function obtained in section 1.7. can be applied to molecular
covolume and viscosity data available for hemoglobin. The molecular
covolume, U, is related to the 2nd virial coefficient, B employed in
osmometry by U = ZBMrz. Baghurst et al (1975), using a molecular
weight of 64,500 found @~ the value of the product Bﬂr to be 4.8 ml/ém.
Using instead the exact value far the molacuiar weight found by sequence
analysis to be 64,793, this product becomes 4.78 ml/bm; this gives the
ratio U/I‘Ir to be 9.56 ml/gm. From the plot of reduced specific viscosity
against concentration (Figure 51) an intrinsic viscosity of 2.99 ml/gm
has been determined by a least squares fit to the new universal equation
for transport coefficients at all solute concentrations (ses section 1.7.1.
and Appendix IV). The value of I is calculated to be 3.20, corresponding
to a spherical particle (Figure 24). This is consistent with the findings
of x-ray crystallography (Perutz et al, 1960). The value of v for a
spherical particle is the Einstein value of 2.5. By back substitution
into equation (8) and using a value for Mr of 64,793 one obtains a value
for V_ of 1.286 x 107"° en®. This corresponds to a Stokes radius of
31.3 ﬂ, in excellent agreement with the result of 32.3 E calculated by
Alpert & Banks (1976) from the diffusion coefficient dstermined by laser
correlation spectroscopy and agrees exactly with the result of 31.3 ﬂ
calculated by Laurent & Killandsr (1964) from the diffusion coefficient
determined by gsl filtration, both groups assuming a hard sphere model.
The Stokes radius can also be found directly from the molecular covolume

and molecular weight assuming a hard sphere model: Baghurst et al (1975)
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determined a value of 31.3 g, again in exact agreement. The corresponding
radius of the sphers calculated from the crystallographic dimensions of
64 x 55 x 50 g of Perutz et al (1960) is 28.0 ﬂ, indicating hemoglobin to
be swollen in solution by approximately 40% (v/v).

If one uses standard errors of +.03 (= 1%) and * .096 (= 1%) in
U/ﬂr respactively, the calculated standard error (Paradine & Rivett, 1960)
in ITis + .045. The maximum error corresponds to an axial ratio of
1.8 for a prolate model but as high as 6.8 for an oblate model, indicating

the difficulty in applying II to macromolecules that are oblatoid.



Figure 51.

Plot of reduced specific viscosity versus concentration for human oxy -

hemoglobin (0.1M KC1l buffer H = 6.,0)e.

The curve fitted is that due to a weighted least squares fit to the neuw
universal squation for the concentration dependence of transport coefficients
(equation 60). The weighting factor used was (1/concentration).

[n] = 2.99 m1/gm, kn = 7.8 ml/gm.
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Appendix IV Viscous Flow and Sedimentation of Concentrated Dispersions

of Particles {quoted from A.J. Rowe, mss. in preparation)

The hydrodynamic properties of dispersions of particles in fluids
are quite well described at very high particle dilution, both for simple
models (spheres, ellipsoids, rods) and for more complex models which may
be represented as assemblies of simple models and the appropriate
interaction tensors computed. Restricting outselves to the case of small
particles (Brownian motion dominant) suspended in ligquids, the work of
Stokes, Einstein, Perrin, Simha, Broersma and others (for simple models)
and of Kirkwood, Bloomfield and others (for assemblies) enables a
reasonably accurate description to be given of the sedimentation and
viscous flow properties of such suspensions to be given at 'infinite
dilution'.

At real particle concentrations however, no theory has proved
adequate, even for the simplest particle model - the sphere. The need
for such a theory is evident in many fields: in my own field of
Biochemistry it would be useful both for methodological purposes in
characterising macromolecular properties and for the description of
'in vivo' systems, which are generally rather concentrated dispersions
of macromolecular particles. I have beesn concerned to derive such a
theory, relating the properties of suspensions of particles at real
concentration to their 'infinite dilution' behaviour. 1In a recent paper
(Rowe, 1977) a first part of such a theory was described: the extension
of this theory to cover the case of high concentrations is now described.

The State of the Problem

It has long been noted that the concentration dependence of
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sedimentation and of reduced specific viscosity is finite sven at high

dilution, and remains nearly linear over moderate ranges of concentration:

(sedimentation) s, s(1 = ksc) o o8(1 + ksc)-1

(viscous flouw) g = (EEE

= ) 00 (1 + knc)

c

A recently derived theory (Rowe, 1977) shows that

k = kg = 2v (

+ (7/e)%)

<i <I
w

for compact particles, where V is the partial specific volume of the
particle and f/?u, the frictional ratio, is a parameter computable for
simple models and for assemblies of sub-units. This theory is thus
applicable to particles of any conformation. The values predicted for
both spheres and other pérticles agree wall with experimental evidence
and with earlier theoretical predictions for spheres (Figure 52, Table 24).
At higher concentrations two further effects must be considsred:
(1) mutually proximity of the particles affects the rate of energy
dissipation at constant shear (the 'cloud effect' of Burgers).
In general this poses a many-body problem which is not amenable
to solution by classical technigues.
(ii) the critical packing fraction (¢p) will be approached. Semi~
empirical equations due to Mooney (1951), Dougherty and
Kreiger (1972) and others describe the viscosity of suspensions
of spherses in terms of ¢p.
A_New General Approach
The theory applicable to high dilutions (Rows, 1977) was based on
the supposition that only a 'frame-of-reference' effect need be considered

in this case. Derived in terms of sedimentation, it is shown that the
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latter must be unchanged with concentration in a frame of reference

defined by the solvent in return flux (i.e. solvent not transported

or convected with the particles). The equation above then follows from
the relation bstween the defined frame of refsrence and the cell-fixed
frame of reference in which measurements are normally mads.

To extend this approach to higher concentrations we re-define the
problem by considering the system to consist of a large but finite
number of volume elsments, sach slesment small in comparison to a
particle. Thess volume elements can bs classified as eslements of
dis joint sets V1....V4, shown in a Venn diagram for two particles
(Figure 53).

Among interesting properties which may be noticed are that

(i) Sets V1, V3 can be classified into sub-sets

vl, = u1n, v3, - u3n, for n particles in the system

1 1
(ii) v1, N v1j = ¢ 3 but v3, N usj £ o
(iii) In Newtonian flow, the magnitude of the flow vector of the
solvent at any point in the system is defined by the fraction
of the volume eslements in the vicinity of that point classified
as in V2 U V3 in relation to those in V4 U V2 U V3
(4v) v1; N V2 # o: more completely V2 is partitioned into the
dis joint subsets V2a and V2b, where u1irﬁ V2a = ¢ ;
v1, N Vzb #0: and pr, the critical packing volume of the
particles, determines the relative number of elements in
V2a and V2b {¢p =1; V2a = @},
On the assumptions that n is large, and that the elements in V3 are

located randomly in V3 U V4, then a simple finite probability space
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can be constructed, enabling us to calculate the number of elements in

Vl.eesV4, and hence the quantity gc in

= 9g/c (1 =

wl o
|o
i
=3
(1]
;]U
]

since V1IU V2U V3 = gc.

The result is given by

= & = (kc = 2cvs) -

et o X (5 (1) ge
where z = 2cv_ " (cus) (1 Q)+, Q=

P

which for almost all cases simplifies to

kc = 2¢g'-1 (CGS )2
2
gc = %

ke = 2cv_ + 1
S

gc)

i=w

i i+
Ddi-1(d -8 )

i=2

(1 - dvp)/cbp

where k = I<s or kn H ;s = specific volume of the hydrodynamic particle.

This equation predicts rather accurately the high=shear viscosity

of latex spheres over the entire concentration range (Figurss 54 - 58).

It is applicable only to Newtonian flow, but is free of arbitrary or

empirical constants, The treatment used has some affinity with the

widely used approach invelving transient doublets, triplets, etc. (i = 2

in the above summation refers to 'doublet! interaction, etc.), but as no

particle model is employed, the results should be general for all particles.

The ¢b term would often be difficult to estimate, but computer simulation

shows that an exact knowledge of ¢b is unimportant except at the highest

concentrations
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Figures 54 - 58 demonstrate the success of the theory in predicting

known properties of sedimentation and viscous flow at real concentrations.
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Table 24, Various theoretical estimates and a practical estimate for

k2, the second coefficient in the expansion for Mol in

terms of ¢ (volume fraction)

Z

nrel—1 +k1®+k2¢+liﬂllﬂiliil.
Estimate for k2 Author

7.5 Vand (1948)

9,15 Manley & Mason (modification of Vand) (1954)

75 Kynch (1956)

14.1 Gold (1937)

12.6 Simha (modification of Gold) (1552)

7.6 Batchelor & Green (1972)

10,0 Rowe (1977)

'about 10 Cheng & Schachman data on PSL spheres (1955)



Figure 52,

Empirical data and the equation for transport-concentration dependencs
(Rowe 1977), at high solute dilution. The equation enables Nr(molacular
weight) values to be calculated from s and ks only. The agreement found
between values for Mr computed thus and Mr valuess from the litsrature
(various methods) is good evidence for the applicability of the equation

to a wide range of systems.

Solute Nr(s+ks) Standard Symbol
—l'z(l—lt) error

Proteins, nucleic acids, 1.02 0.01 L
viruses

Cellulose derivatives 1,01 0.09 O
in CUAM

Cellulose derivatives 0.97 0.10 A
in ACETONE

Levans (aqueous) 0.99 0.04 O
Poly(methylymacrylate) 1.05 0.08 &

in ETHYL ACETATE
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Figure 53. Venn diagram showing the volume slements for two particles

in solution

V1 = particle volume
V2 = particle co=volums
V3 = solvent frictional forward flux

V4 - solvent return volume flux
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Figure 54, Relative viscosity of spheres as a function of volume fraction.

Predicted line, for kn = 4, ‘{,-’S =1, ¢p = 0.,64. Experimental

data points are also shown
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1
k = 100
\ s
8
ks = 500
o6 _
k = 1000
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S ¢, = 2000
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ks = 5000
k 10000
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Figure 55. for highly asymmetric particles the sedimentation coefficient

falls very steeply with concentration, to reach a relatively

constant 'plateau'! value. Computed curves.
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« 002
concentration (g/ml)

Figure 56. Viscosity/sedimentation coefficients _as a function of concentration

for ks(gq) = 1000, US = 1. The 1/s plot is linear, whilst the

direct plot is markedly curved. Computed curves.
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Figure 57, Uiscosity/sed;mentaticn coefficients as a function of concentration

for ks(l_<_n) = 6, Both plots are reasonably linear over this

concentration range., Computed curves.



Figure 58. Hydrodynamic data for Bovine serum albumin fitted

using the new general egquation for transport at

all solute concentrations
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Evaluates values of the various hydrodynamic shape functions

for tri-axial ellipsoids for a user spsacifiable value of

Produces tables of these functions for axial ratios between

Produces a contour map of v in the (a/b, b/c) plane for

Producss plots of the various tri-axial functions in the
(a/b, b/c) plane corresponding to the point (1.5, 1.5).

Several plots allow for arbitrary errors in measurement

Non=linear least squares iterative method for resolving a 2=

term exponential birefringence decay. This program (and the

Appendix V  FORTRAN IV computer programs
Program 1:

the axial ratios (a/b, b/c)
Program 2:

1.0 and 2.0 in steps of 0.1
Program 3:

axial ratios between 1.0 and 3.0
Program 4:
Progrfam S5:

following two) produces its own synthetic data
Program 63

Program

Fourier Transform solution of the Laplace Integral Equation

method

R=constrained non=linear least squares iterative method



Function

Computer Symbol

A/B
B/C
NU, S
r
CA, CA/CO
c8, CB/CO
cc, cc/co
RHOA, RHOA/RHOD
RHOB, RHOB/RHOD
RHOC, RHOC/RHOO
BETA
R
DELTAA, DELTA(A)
DELTAB, DELTA(B)
DELTAC, DELTA(C)
GAMMAA, GAMMA(A)
GAMMAB, GAMMA(B)
GAMMAC, GAMMA(C)
Mua, mu(a)
mus, mu(Bs)
muc, mu(c)
TAU, TAU/TAUO
PSI
LAMBDA
TPLS, THETA+, Z

TMNS, THETA-, U



Function Computer Symbol

S, DPLS, DELTA+, V
§_ DMNS, DELTA-, W
Y, GPLS, GAMMA+
Y_ GMNS, GAMMA-

T/ Ty T1

T, /T, T2

LA T3

/T, T4

rs/rO | TS
gy THPLUS

6 THMNUS
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[wlyley)

201 FORMAT( 5X,"FLUORESCENCE ANISOTROPY RELAXATION TIME RATIOS:™)
WRITE(3,130)T1
130 FORMAT( 5X,* Ti  *,F15.5)
WRITE(3,131)T2
131 FORMAT( 5Xs™ _ T2  "4F15.5)
WRITE(3,132)T3
132 FORMAT( 5X," T3  *3F15.5)
WRITE{(3+133) Th
133 FORMAT( 5X,™ T4  ",F15.5)
WRITE(3,134)T5
134 FORMAT( 5Xy™ TS5  "™,F15.5)
7 stoP
END
REAL FUNCTION FUN(X)
gggngnzpnannzn,c.nn
GOTO(10+20+30,40+50960470+988590,100) 5NN
10 Eg¥§%£:(A*A+x)¥¥1.5'ta¥a+x:4¥n.s*tc'c+x)**ﬁ.5:
29 Eg¥3é§(tA¥A+x:'*n.5‘(B4B+x:**1.5¥(c*c+x:'*u.s:
30 gg¥§%£t(A*A+x1**a.54ta*a+x)*¥u.5*(c*c+x:'¥1.5)
40 gg¥aé£((A‘A+Kl‘*ﬂ.5*(B*B+Xl*‘1.5‘(C*C+Xl*‘1.5)
50 ;g¥§%£t(A‘A+x)**1.5*ca¥a+x;**a.s*tc*c+x;*¥1.5)
60 Eg¥3%ét(A‘A+x1**1.5*ca*s+x:**1.5*:c'c+x)*‘u.5)
70 Eg¥ﬁéé{(A¥A+x)¥¥a.54ta*e+x:4*1.5*xc*c+x)**1.5n
80 Eg¥§§§((A'A+x1¥41.5*t3*3+x3**n.s*(c¥c+x)**1.5a
90 Eg¥=é§((A‘A+K)'*1.5‘(B*B+X)'*1.5*(C‘C+x3**0.5)
100 FUN=1.07(((A®A+X) * (B¥B+X) * (C*C+X) ) **(, 5)
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X/ ((A®A+X) ¥%( 5% (B¥B+X) #¥1 , 5% (C*C+X) **1,5)

RETURN
RETU

70 FUN

RETURN
B0 FUN=1/ ((A®A+X)*¥1 5% (B*B+X) ¥¥ 1 5% (C¥C+X) **(,5)

0 FUN=1/({A®A+X) **¥[ 5% (B¥B+X) ¥*1,5*% (C*¥C+X)**¥1,5)
50 FUN=1/({A®A+X) ¥%1 5% (B¥3+X) *¥([ 5% (C*C+X) **1.5)

4

RETURN
80 FUN=X/((ARA+X)*¥*1 ,5%(B%B+X) **[, 5% (C*C+X)**1,5)

RETU
90 FUN

S¥ (B¥B+X) *¥%1 ,5% (C*C+X) **(,.5)

X/ {(A®*A+X) *¥],
100 FUN=1,0/7{((A*A+X)*(B*B+X)* (C¥C+X) ) **(,5)

RETURN

RE TURN
END
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16
20
30
&0
50
60
70
80
90
100

CALL CONTRL(GMNS152142141,214214Hs1,1)

(XVII)PLOT OF THE 5 FLUORESCENCE ANISOTROPY RELAXATION TIME
RATIOS

CALL FRAME

CALL BLKPEN

CALL BORDER

CALL CSPACE(0e0+140+4040+1.0)

CALL SCALSI(0.1,0.1)

CALL CSPACE(0.050.000150.0,0.0G001)
H(1)=1.02536

CALL CONTRL(T1,152192141921421+Hy1,1)
H(1)=1.288383

CALL REDPEN

CALL CONTRL(T2491,2142141,+21,214Hs1,1)
CALL GRNPEN

H(1)=1.31877

CALL CONTRL(T341+21921914214214Hs1,1)
CALL BROKEN(4+8+8,8

H{1)=1.43405

CALL CONTRL(TU441+21+21+1+214214Hel,1)
CALL BLKPEN

H(1)=1.02497

CALL CONTRL(T54+152152191521521+Hy1,51)
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*({C¥C+X) **73,5)

ZU(ABA+X) ¥¥[ 5% (B*B+X) ¥¥1 . 5*¥(C*C+X) **(0,.5)
=EZIIA‘A+K]"D.5*!BfB+X}“ﬂ.S‘(C‘C+X)“1.5)
Uéﬁ((A'A*K)‘*Q.S‘(B‘B+X)**1.5‘(G‘C+X)**1-51

=1/ ((ARA+X)*¥] S¥ (B*B+X) **#],5% (C¥*C+X)**1,5)
EE¥EEZ(CA‘A+X)**1 S*(B*B+X) ¥*¥1 ,5% (C*C+X) **{.5)
FUN=X/ ((A*A+X) ¥*( 5% (B¥B+X) ¥¥1,5% (C*C+X) ¥*¥1,5)
g%&£§§((A*A+X)“1.5*(B‘B+X)**0.5'(6‘0+X)"1-5)
§5§2§¥((A'A+Xl“1 S*(B¥*B+X) ¥*¥1,5¥% (C*C+X)**]7.5)
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= AVOGADROS NUMBER

ALCULATING THE SUM OF THE SQUARES OF THE RESIDUALS FOR
a; AND A=
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;NE FOR A CuUBIC

(N=1))/H2=(AY{N=1) =AY (N=2))/ (AX{N=1)-AX(N=2))
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SUBROUTINE FOR CALCULATING THE ELLIPTIC INTEGRALS USED FOR DETERMINING
THE S VALUE FROM THE CURRENT GUESS FOR A/B
REAL FUNCTION FUN(Y)
gggMgN/PARAM/GAﬂﬁﬂliﬂilgT(101);AgCgD,NN,AA(B),AD(B)
GOTO(10,20+30940,50960970+80590) 5NN
10 ;g¥3é§u/((A¥A+v)4*1.5¥(s*a+v)*4a.5*(c*c+v1**a.s)
20 Eg?;éﬁB/((A¥A+YI**a.s*(B*B+Y}‘*1.5¥(C‘C+Y)*‘ﬁ.5)
30 §g¥ﬁéﬁu/ttA*A+vr»*o.54ca*a+v:**u.54tc*c+v)**1.5)
40 Eg?;éﬁalt(A¥A+Y)“0.5‘(8*8+Y)¥‘1.5*(C*C+Y)*‘1.5)
50 ;g¥ﬁéﬁu/t¢A4A+va*¥1.5*(B‘a+v;**a.5¥(c'c+v:¥*1.5)
60 §g¥3éﬁu/t(A‘A+v’**1.5~ta*a+vr**1.5¥(c*c+v;**n.s}
70 FUNSY/ ((A®A+Y) *50,5% (B¥B+Y) *%1 ,5% (C¥C+Y) ¥%1,5)
RETURN

80 FUNEY/((A‘A+YJ"1.5‘{B‘B+Y)“G.5‘(C‘C*Y)‘*i.S)

ETURN
90 FUN=Y/ ((A*A+Y) #*1 5% (B*B+Y) **1,5% (C*C+Y)*¥(,.5)
EETURN

A

Results:

PROTEIN 1, 0.1 DEG. ABSOLUTE ERROR
110NS,s 10GPTS
STREAM3

FUNCT ION VALUE ON EXIT IS .00039996299
A/B= 1.48309 A+= 070458728408 A-= -043831535609
FUNCT ION VALUE ON EXIT IS .000399962998
A/B= 1.48309 A+= .073458845275 A-= .048831534073
FUNCT ION VALUE ON EXIT IS .00399962998
A/B= 1,48309 A+= L(70458881237 A-= ,348831534081
BEST LEAST SQUARES VALUE = » 000399962998
A/ B = 1.,48309
A+ = «0707
A= = «0488
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Appendix VI ~ Use of M, V and s to determine kg

S

Rowe (1977) has shouwn that

3/2 - - 1/2
M = N GTrnos 3v kS - Vg
r A - Ld — -- :
(1=v Oa) 4m 2V v
This can be rearranged to give
3
-lar m2f1-%, v
ka = 2v | __ .. | 0 + _s
o~ 2 -
3v NA E‘ITT]O s v

An sstimate for '\73/'\7 is required, thus this equation would normally
be used as a check for internal consistency between values for sadimentation

and viscosity parameters, since 33/3 = kn/ kg
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Appendix VII Comparison of the radius of gyration for a sphere of

uniform mass with that for a sphere of the same mass but with a spherical

cavity

The radius of gyration, RG of a sphere of uniform mass and radius
R is given by:
R R
Rg = Jdﬁr‘t dr J41Tr2 dr

o] (o]

aijr
-}

(1)

(Tanford, p 306, 1961). The radius of gyration of a spherical shell of

uniform mass with radius R2 and with a centrally placed spherical cavity

of radius R1 is given by:

rRZ o ij 44 ij 24 5 = 325 - R15
g = * ur BaE = B\R3 _ R3 (ii)
Ry f R, 2 1

The results of electron microscopy and x=-ray diffraction (Harrisocn,
1959, Farrant, 1954, Kuff & Dalton, 1957, Labaw & Wycoff, 1957) suggest
that apoferritin consists of twenty four sub-units, each of molecular
weight 20,000, arranged in the form of a spherical shell of diameter
109 . If we take the radius of the hollow to be 18.5 ﬁ, and ths outer
radius of the shell to be 54,5 K, RG is calculated using formula (ii) to
be 43.0 B. The radius of gyration, had the same mass been concentrated
into a uniform sphere of density identical to the shell would have been

41.6 R, using formula (i)} i.e. a discrepancy of ~ 3.4%
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