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CHAPTER 4

Determination of a Stable, Unigue Solution by Combining Results

from Viscosity, Sedimentation and Electric Birefringence
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4,1 Methods for Analyzing the Decay Curve

Resolution of a 2-term exponential birefringence decay curve into
its two component relaxation times or decay canstants is notoriously
difficult, even for components that differ by several orders of magnitude.
The situation is especially difficult for globular macromolecules faor
which the decay constants will generally not differ by more than -~ 20%
(see below). A recent review of the salient methods currently used for
attempting to analyse multi-component exponential decay curves, emphasing
these difficulties, has been given by Jost and 0'Kanski (1978). The three
methods that are apparently the most useful are
(1) Graphical Peeling Analysis (0'Konski and Haltner, 1956)
(2) Non-Linear Least Squares Analysis (wilde, 1964, Powell and Macdonald,

1972, Gill and Murray, 1976)

(3) Fourier Transform Solution of the Laplace Integral Egquation (Gardner,

Gardner, Laush & Meinke, 1958)

4.,1.1., Graphical Peeling Analysis

In this method, the logarithm of the birefringence is plotted as a
function of time., For a single term decay this should of course give a
straight line, If the plot for a two~term decay can be extended to
relatively long times with sufficient signal-to-noise ratio, and if the
tﬁn terms are not too close, then the limiting slope will give an estimate
for the longest relaxation time (or shortest decay constant). This
limiting slope can be extrapolated back to zero time and then "subtracted"
from the originmal signal; the slope of the resultant can then be
detarmined and hence the shortest relaxation time found (Figure 39). As

might be expected, this method, although rapid, is very approximate and
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is of little use for resolving relaxation times of the same order of
magnitude., However it is still useful for indicating the orders of
magnitude of the decay constants which may be used as initial estimates

in non-linear least squares iterative procedures.

4,1,2. Non-Linear Least Squares Iterative Analysis

In this method, the weighted sum of the sgquares of the residuals
x%is calculated between a set of experimental data points and the
function to be fitted. If xj represents the value of the j'th
experimental point and gj(xm) the corresponding computer point for a
given estimate for the X, the number of independent variables, then we

define our 'goodness of fit! parameter,x2 s by

2

(110)
where ‘G is the standard error in the j'th experimental point. The
best values of the X_ are such that 3x73X =0, for all the X .
For the particular case of electric birefringence, (ﬁ is approximately
constant for all the xj (although this is not generally true for photon
counting - e.g. fluorescence depolarization anisotropy - experiments)

and the minimization condition becomes

3F _
X0
(111)
where
n
2
F = Z {xj - gj} (111b)
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In the case of a two-term birefringence decay, the minimization
is said to be 'non=linear' in that the data are to be fitted to a
function which is the sum of a product of terms consisting of an
ad justable parameter (i.e. a pre-exponential factor) with another
function of another adjustable parameter (i.e. a decay constant or
relaxation time). In order to evaluate BF/BXm for a current estimate
for the parameters Xm, the solution either has to be linearized using
a Taylor expansion as outlined by Jost & 0'Konski, or alternatively, a
quadratic or quasi-Newtonian procedure can be employed (Gill & Murray,
1976)., In this latter case, the parameters Xm are iterated until the
minimum in F is found., Gill & Murray's algorithm is particularly
attractive in that upper and lower limits for the variable can be
specified and included as external constraints. A problem with the
least squares technique however is that the method is very sensitive to
subsidiary minima in X2 (or F) leading to false 'best parameters',
even for data of very high precision. The presence of these subsidiary
minima can often be detected by repeating the analysis for a series of

different initial guesses of the adjustable parameters.

4.1,3, Fourier Transform Solution of the Laplace Integral Equation

The birefringence An{t) = S(t) is written as a Stiel jes integral:

L]

Il -6811: n " t
Ae = Z A.e = J exp(-At)dh(A)
1

o]

S(t) =

He~13

(442

where h( A ) is a step function, i = +,= and A = 66, .
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The right hand side of equation (112) can be rewritten in the form
of a Laplace Integral:

oo

S(t) = J exp(-At)g(A)dx
° (113)
where g()) represents a sum of Dirac delta functions. A plot of
g(2) versus X will give a frequency spectrum with peaks; the centre
of each peak corresponds to a specific decay constant, and the height
of the peak is proportional to the value of the pre-exponential factor

y

A;+ s transform A= eY and t = e, Then

o«

s(e™) = J exp[-e XV 1gce V) Vay

-0
(114)
Multiplying by.ex:
e® s(e¥) = J exp[—e(x-Y)]e(x'y)g(e-y)dy
- &
(115)
Taking the Fourier Transform of the left hand side of (115)
F(u) = . J e* S(exjeiuxdx
(116)
Thus
1 & L, E
F(u) = —= J ; J exp[-e 1) geVyay | Lexplius + y)lds
var 0 L0

(117)
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with s = x = y. Rearranging

1 - ;
F(u) = /5;- J g(e y)exptluy)dy. J exp(—es)esexp(ius)ds
- - (118)
Now, if we compare equation (113) with equation (114):
gle™ydy = B ay
(119)

Thus if we obtain g(e™) as a function of y, using sguation (119)
this will be equivalent to a plot of g(A)/A as a function of A .
The right hand side of equation (118) is the product of the Fourier

Transform, G(u) of g(e”’) and the Fourier Transform, K(u) of exp(-e®).

Thereforse
F(u) = V2 G(u) K(n)
(120)
i.e.
_ /1 F
G(U) = E K(U)
(121)
Taking the inverse Fourier Transform of G(n):
s - g | R
(122)

K(u) can be evaluated anmalytically in terms of the complex I' function:

K@ = /5 TQ+ iy

(123)
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The method therefore has four basic steps:
(1) Evaluate the Fourier Transform of the data (equation 116)
(ii) Divide by the complex I function (equation 123)
(iii) g(e-y) as a function of y is found by using the inverse Fourier
Transform
(iv) A plot of g(A)/A is thus obtained as a function of A
The advantage of this method is that an initial choice as to the

number of exponential terms to be fitted is not reguired.

4,1.4. Dther methods of analysis, previously used for deconvoluting

Fluorescence decay curves

0'Connor, Ware and Andre (1979) have recently compared methods for
deconvoluting both one and two term exponential fluorescence decay curves
(sections 1.5.4, 3.3.2) - methods which could be equally applicable to
corresponding birefringence decays. The methods chosen were
(i) Non=Linear Least Squares
(ii) Method of Moments
(iii) Laplace Transforms
(iv) Method of Modulating Functions,
(v) Exponential series method
(vi) Fourier Transforms
They discovered that all six methods were satisfactory for anmalysing
undistorted one - component data, but that the least squares method was
most suitable when distortions are present. For resolving two closely
spaced terms (9.5ns & 11.5ns) in a 2-term undistorted decay only the least
squares method and the method of modulating functions proved satisfactory.

They thus concluded that the non-linear least squares iterative method
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was the technigue of preference for the analysis of simple decay laus.

4,2, Choosing the best algorithm: computer simulation

Following the work of Jost & 0'Konski (1978) and 0'Connor, Ware &
Andre (1979), the non-linear least squares iterative and possibly the
Fourier Transform Solution of the Laplace Integral Equation methods
seemed to be the best available methods for resolving a 2=term
exponential birefringence decay. I attempted to test for myself these
methods by assuming three proteins of known (tri-axial) dimensions and
hence axial ratios (a/b, b/c), assuming a swelling ratio (Vs/;) = 1,3,
and v = .73 (typical for globular proteins). From these values the
molecular weight, viscosity increment, R-function, 6+ functions, intrinsic
viscosity and hence decay constants o, could be prad;ctad (Table 14). Ue
then assume pre-exponential factors AE, AR', of, respectively, 0.07 and 0.05°
radians taken from a typical initial birefringence GEAL + Al) of 0,12
radians (Krause & 0'Konski, 1959) and hence the unperturbed decay curve
for each simulated protein can be given, The actual individual values for
Al are not significant in the analyses, except when they differ by several
c;aers of magnitude (see section 4,5). One then places simulated
experimental error on each of 100 data points for the curves, using a
computer normal pseudo-random number generator, and, first of all assuming
no errors in the molecular weight or intrinsic viscosity, investigate how
much error in the data points is tolerable, before each algorithm fails to
give back the correct decay constants and hence axial ratios, within
reasonable limits. The algorithms would then be tested for errors in the

intrinsic viscosity and molecular weight. Figure 40 illustrates such a

mock experimental decay curve with 0.1 degree standard error (about the
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current availabls experimental precision - B., Jennings & V. Morris,
private communication) on each of 1000 data points, for Protein 1
[true (a/b, b/c) = (1.5, 1.5)]. 1In the analyses the pre-exponential
factors AL are of course regarded as unknown variables.

4,3 Non-Linear Least Sgquares Iterative Method

The gquasi-Newtonian guadratic method for minimizing any functioen
(i.e. in this case, the sum of the squares of the residuals F) given
by Gill & Murray (1976) and incorporated in the UK NAG Mk.VI subroutine
ED4JAF was used. In this algorithm the user, besides supplying the
subroutine for calculating the value of F at any point X, has to supply
fixed upper and lower bounds on the independent variables X1, XZ,
ceseseany Xm. This routine was incorporated in the FORTRAN IV program
given in Appendix 1V, as Program 5., This program generated its ouwn
hypothetical decay curve with normal (Gaussian) pseudo-random error
generated on each data point (using NAG routine GOSADF), the amount
specifiable by the user. The program attempted to retrieve the decay
constants, hence the 6+ functions (from the user-specified molecular
weight and intrinsic qucusity) and hence the axial raties (a/b, b/c)
of the general tri-axial ellipsoid. Owing to the problem of the presence
of the danger of the routine'Falling into subsidiary minima as mentioned
by Jost & O'Konski (1978) - see section 4.1.2., = it was necessary to
repeat the method for a large number (30) of initial guesses. In fact
the program was written to generate its own thirty different initial
guesses by using "DO" loop between user specifiable initial guess limits.

Unfortunately, even data as accurate as .001 degree standard error on

each data point (about 2 orders of magnitude greater than the current
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experimental precision) failed to give back the correct (a/b, b/c)
within reasonable limits, and even data of machine accuracy (14
significant figures) did not generate the exact value of (1.5, 1.5),

as Figure 41 illustrates.

4.4, Fourier Transform Solution Method of the Laplace Integral

Equation Method

4,4,1, Cut-off Errors

In order to use this method outlined in section 4.1.3., the
integrals involved in taking the Fourier Transform of the data
(equation 116) and in taking the inverse Fourier Transform (equation 122)
have to be solved numerically. Unfortunately, the integrals extended
from -« to += § with real data there exists a finite cut-off time, tD
or equivalently Xge Cut-off errors tend to increase the height of the
error ripples in the final results, For equation (116), if we choose a
cut-off too short for Mo there is a loss of resolution of the component
peaks. 0On the other hand, if we choose a cut-off in g too long then
the cut-off at x  causes the amplitude of the error ripples to increase;
uo has to be varied therefore to obtain the optimum resolution for a

given data set.

4,4,2, Numerical Integration

Following Gardner gt al (1958), each value of S(t) was multiplied
by the current value of t to give exs(ex) (equation 115)., Whereas t
ranges from 0-+«, x ranges from —» to +w, thus we can split the integral

in equation (116) into symmetric and anti-symmetric parts:
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X
Q
F(u) = %J [S7C) + §"(-x0]e M ax
0
(124)
Therefors
X
0
1 * *
F(w) =/§F j {[S (x) + S (-x)]cosux
0
+ i[S*(x) - §*(-x)]sinux }dx (125)

giving real and imaginary parts for F(u), i.e., Fo & F_. K{u) can be
similarly split into real & imaginary parts KC & KS. Equation (121) thus

becomes:

/T Fc + iFS ; [Fi + iFS)(Kc - iKS)
Gw) =/5 -

K + ik K+ K*“
C S c S
(126)
and the inverse transform (122) becomes
u ; :
ey = 2 ° Fe * FJ X, + 1K) (cosyu - isinyw)du
& om KZ+ K2 yu ¥
(127)

where g and -p, are the cut-off values for u, Since all odd values

vanish,
o 1 Yo ( K+ FK F K, =~ FK
gle™”) = v J % —X T cosym + -—12:7;7§;—— sinyn pdp
o]

(128)
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The numerical integrations (125) and (128) are solved using the
NAG routine DO1GAF. The value of the complex I' function needed for
calculating Kc and Ks was deduced using a routine given by Lucas & Terril
(1970). As with the non-linear least squares iterative method, the
program (Appendix IV Program 6) generated its own synthetic data using

NAG normal pseudo=-random number routines GOSADF & GOSBBF.

4.4.3- Results
The program was firstly checked by applying it to the case first

considered by Gardner et al for a single exponential decay, viz.

$(t) = 100 ¢ 9-92¢

assuming data of machine accuracy (i.e. no perturbation routine
included). The retrieved )\ from Figure 42 is ,021, in close agreement
with Gardner et als value, The data was taken at logarithmic intervals
(corresponding to equal linear intervals in x). The algorithm was then
applied to the two term exponential decay curve for Protein 2, Houwever,
even with data of machine accuracy and taken at logarithmic intervals

in t (impossible to obtain in practice for our particular case) the
retrieved values for li and hence the decay constants was poor and varied
with the cut-off values for u, as Figure 43 and Table 15 shows. When
normal pseudo-random error of .001 deg was applied to the data points,
no resolution was possible for all values of Moo @s Figure 44 clearly
demonstrates. We thus conclude this method to be of little use for our

case of interest.
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4,5, A new R-Constrained Non-Linear Least Squares Algorithm

Owing to the inadequacy of the other treatments for resolving a
two-term exponential birefringence decay into its component relaxation
times (or decay constants), particularly for glebular proteins (close
decay constants), I have now developed a new R-constrained least sguares
algorithm. If the R-function line solution (3.3.1), which can be found
from the ratie of the sedimentation regression coefficient ks to the
intrinsic viscosity [n], is included in the least sgquares algorithm (4.3)
as a constraint, then the problem is effectively reduced from one of four
independent variables (Q+, 6_s Al A') to one of three (a/b, Ai, At).

The solution is constrained to lie on the R-curve, thus a given estimate
for a/b will necessarily give a 'constrained' value for b/c; the computer
program can then calculate the values for 5+ and §_ corresponding to this
estimate, hence the decay constants (using also the values for[n] , Mr -
equation 107), the decay curve and finally the sum of the squares of the
residuals (SSR) between the computer points and the experimental curve.

By iterating along this R—curve for a/b and the two pre-expcnential factors
A;, the best estimate for (a/b, b/c) can be found from the minimum value
u; the 5SR.

The constraint of the R=curve was included in the algorithm (Program 7
of Appendix IV) for the three simulated proteins considered previously
by use of the Leicester University Computer Library routine EOILF1, a
listing of which is given towards the end of Program 7. The user specifies
the coordinates of knots in the curve (see Figures 45, 46 & 47), or |

alternatively, the whole curve digitised, and the routine interpolates

between these points using a cubic polynomial ('spline')} fit (K. Brodlie,



132,

private communication). In the main program, normal (Gaussian) random
error of 0.1 degrees on each of the 100 linearly separated data points
was supplied using the pseudo random number routines mentioned
previously. The magnitude of this error corresponds to that expected
from current experimental precision (B.R. Jennings, V. Morris, private
communication). It was found in pilot runs that the danger of the
algorithm falling into subsidiary minima, as present for the unconstrained
case (section 4.3.) was no longer significant., The number of initial
guesses was thus reduced from thirty to three to save on Computer timej
the best estimates were generally the same for all three initial guesses
(except those marked with an asterisk in Tables 16, 17 & 18). The values
for (a/b, b/c) retrieved did however depend on the cut-off time specified
for the decay curve., If there were no error in the data points then very
long cut-off times would be desirable, since this region is dominated by
the longest relaxation time (or shortest decay constant, e_). However,
the effect of a given absolute error is more pronounced the lower the
birefringence signal,

The optimum cut-off time, and hence the best value for (a/b, b/c)
was found by repeating for eight different streams of normal random data,
specified by the UK NAG Mk VI routine GOSBAF(0.N), where N represents the
stream number of the random dataj the optimum cut-off time for each decay
curve was then determined by finding the best standard deviation ef the
a/b's from the eight streams for increments of Sns in the cut-off times.
The values for the corresponding best mean value for a/b (and hence b/c)
together with the corresponding standard error for the eight streams of
data could then be found (Tables 16a, 17a & 18a).

This procedure was then repeated allowing for 1% experimental error
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in the R-curves (Tables 16b,c, 17b,c, 18b,c). If the points corresponding

to <(a/b, b/c)> +op

then those of the <(a/b, b/c)> =% regions of allowed values for

are joined together for each of the R-curves, and

(a/b, b/c) could then be found (Figures 48, 49 & 50). The mean values
agree very closely with the true values (Table 19). The algorithm was
then tested for the effect of experimental errors in the intrinsic
viscosity (* 1%) and molecular weight ( ¥1.4%). These were found to be
not significant (Table 20); indeed, the molescular weight can now be found
precisely from the results of sequence analyses. Finally, the algorithm
was tested for different initially assumed uélues for the pre-exponential
factors Al and A' (Table 21). Again, these were found to have no
significant effect on the results; even for pre-exponential factors
differing by two orders of magnitude, though the retrieved A' was poor,
the retrieved a/b was in close agreement with the other values.

Once the value for the axial ratios (a/b, b/c) has been found for a
particular protein, it can be combined with the swollen volume of the
protein, if known, to determine the axial dimensions. In Table 22 a '"model
dependent™ (section 1.7.1) estimate for Ue has been found for each of the
three simulated proteins we have considered by back substitution of the
mean values of (a/b, b/c) determined from the analysis above into equation
(8) for the viscosity increment, and again the agreement with the initially
assumed values (Table 19) is excellent., If the model dependent values of
V, are then combined with the values for (a/b, b/c), the semi-axial
dimensions a,b,c for the three proteins considered are found to be (R):

Protein 1: 45,00, 29,98, 20.01 (45.0, 30,0, 20,0)

Protein 2: 42,28, 25.59, 19.61 (42.5, 25.0, 20.0)

Protein 3: 43.11, 33,58, 19.81 (42,5, 34.0, 20.0)

again, in excellent agreement with the initially assumed (bracketed) values.
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4,6, Some Practical Paoints

In applying these equations and algorithms to real protein and other
macromolecular solutions several important factors must be taken into
consideration:
(1) Two or more decay caonstants can also arise if the system is
polydisperse. It is therefore sssential that the solution be rendersad
monodisperse by, for example, gel filtration techniques.
(2) It has now been well established that the single exponential decay
constant previously resovable from the birefringence decay of monodispafse
protein solutions shows a concentration dependence (Riddiford & Jennings,
1967), and it was therefore necessary to determine its valus at several
concentrations and then extrapolate to infinite dilution. One must
naturally assume therefore that the two decay constants for the decay of
a monodisperse solution of asymmetric ellipsoids also show a concentration
dependsnce, and hence must be extrapolated to infinite dilution. On the
other hand, because of the constraint in our algorithm that they must
correspond to 5+ and 5_lina solutions that intersect with the R~curve, the
values for the decay constants ars such that they are not the 'true' descay
constants for each particular concentration but are closer to the infinits
dilution values. Since the extrapolation procedure must thersfore be
empirical the best estimates for a/b at particular solute concentrations
rathar than these 'damped' decay constants may be extrapolated to infinite
dilution; once the extrapolated value for a/b has been found the correspond-
ing value for b/c can thus also be found from the R-curve.
(3) The requirement on the precision of the electric birefringence apparatus
is not only in producing transient decays to a precision of 0.1 degres on
gach data point but alsc the availability of response times (i.s. the finite

time it takes for the orienting electric pulse to be switched off) of about
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an order of magnitude less than that of the faster relaxation time

Adequate response times arse now available (williams, Ham & Wright, 1976)
however with apparatus that uses a laser light source, cable discharge
generator and a memory oscilloscope, giving a response time of ~ 5ns.

(4) In the above analysis it has been shown that greater accuracies in
obtaining the axial ratios can be cbtained if the optimum cut—off time

for the decay is found. In our simulations this was achieved by

averaging over several streams of random data; this corresponds in practice
to taking several decays of the same preparation. Different samples of

the same preparation should be used because of the danger of denaturing

the protein by continually pulsing through high electric fields (temp-
grature sffects).

(5) It has also been assumed that the R function can be measured to a
precision of ~ #1%. Since B values in an s_ versus concentrat;on plot can
be determined to within~ X,2%(Squire, 1578), the ks value can presumably be
measured to within 1% (as, from equation 58, it is approximately a
function of (sc/s) X ccncentration-1). The intrinsic viscosity [n] can
also be measured to within ~X1%¢, the limiting factor here being the accuracy
to which the flow times can be measured. The error in R will thus be of
the order of 1% after taking into consideration that any systematic errors
in measuring absolute solute concentrations will cancel in the ratio

ks/[n] (Rowe, 1977).

(6) Finally, it should be pointed out that because of polarisation effects
on the electrodss and also the danger of denaturation due to heating effects
mentioned in (4), solutions of low ionic strength (<0.01M) generally have
to be used. This apparently prevents the investigation of less soluble

materials. On the other hand, an interesting new method is being developed
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at Brunel University by Professor B. Jennings and his co=workers in

which an ultrasonic field rather than an electric field is used to
initially orient the macromolecules before the decay is cbserved. This
"acoustic birefringence™ (Ballinger & Jennings, 1979) method does not
suffer from the problems of electrode polarisation and denaturation
associated with ionic strengths >.01M for the electric birefringence case,

allowing the possibility for the investigation of less soluble materialse.
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Table 14, Assumed and derived characteristics of three hypothetical

globular proteins

Protein 1 2 3

ASSUMED VALUES

Characteristic
a,b,c | 458, 30R, 20R 42.58,25R,208 42.5R,348,208
v 0.730 ml/gm 0.730 ml/gm 0.730 ml/gm
US/U 143 1.3 148
DERIVED VUALUES
Characteristic
a/b,b/c 1.50,1.50 1.70,1.25 1.25,1.70
Gs 0,949 ml/gm 0.949m1/gm 0.949m1/gm
swollen molecular )
velume 1.1309732x10~ Zcme  0.89011784x10 Zcm°  1.2105602x10~  Jems
V = 4mabe
« 3

Anhydrous molecular
volumeg _ 0.8699793x10-1gcm3 0.684786x10-19cm3 8.9312001x10-1gcm3
v (=(0/,) v,)

Molecular weight

n (=(n/5) V) 71,744 56,510 76,853
v 2,892 2.870 2.840
[n] (=NAUev/Nr) 2.75 ml/gm 2.72 ml/gm 2,695 ml/gm
R 1.479 1,482 1,496
eiad , efEd 0.163, 0.116 0.171, 0.115 0,155, 0.125
3, A 2.821, 2.016 2.943, 1,982 2.645, 2.125
Decay eomstants™  5.g153835x10%sec]’  7.7660465x10%sec;  5.1872430x10°sec™
0, = 2 e By 4.1564612x10%sec™  5,2290121x10%sec™!  4.1674860x10%sec™]
a] r . : ) i
Relaxation times 28,6596ns, 21.4609ns, 32.1301ns,
T, =V/8e, 40.0982ns 31.8734ns 39,5921ns

* T = 293K, n_ = 0.01 gm T
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Table 15, Retrisved dscay constants for varying values of Mo
=y =y - " o g
¥4 Ys Aq=e 1 A2=e 2 ELx1ﬂ 6sec ! 6_x10 6sec 1
11.5 3.13 | 3.55 0.04372 | 0.02872 7.286 4,787
11.6 3,00 | 3.50 0.04579 | 0,03020 B.292 5.033
1.7 2,94 | 3.45 0.05287 | 0.0317S 8.811 5.291
12.0 3,14 | 3.72 0.04328 | 0,02423 7.214 4,039

True value for ©_ = 7.7660465 x 502 aag =

-1

True value for © 5,2290121 x 106 sec
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Table 16. Determination of the optimum cut-off time for Protein 1.

True (a/b, b/c) = (1.5, 1.5)

(a) No_assumed error in R

Cut=off 80ns 100ns 110ns 115ns 120ns 140ns
time

a/b a/b a/b a/b a/b a/b
Stream 1 1,580 1,534 14513 1,503 1.493 1.454
Stream 2 1.946 1.785 1,692 1.654 1.619 1.497
Stream 3 1,591 1.512 1,483 1.468 1.452 1.392
Stream 4 1.644 1.487 1.425 1.396 1.367 1.249
Stream 5 1.623 1.480 1.426 1.401 1,377 1,287
Stream 6 1.186 1.275 1.303 1.315 1.326 1.364
Stream 7 1.573 1.645 1.678 1.694 1.710 14772
Stream 8 1.716 1.623 1.550 1.575 1.562 1.514
Mean 1.6074 1.5426 1.5138 1.5008 1.4883 1.4411
o (SD) 0.209696 0.148967 0.133899 0,132475 0.134403. 0.163491
o (SE) 0.07414 0.05267 0.04734 0.04684 0,04752 0.05780

o(SD) = Standard Deviation ; o(SE) = Standard Error

different answers for different initial guesses

Optimum cut=off time = 115ns
Best estimate for a/b = 1,501 (*.047)

Corresponding estimate for b/c = 1.498
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(b) +1% assumed measured srror in R

Cut—off 110ns 115ns 120ns 125ns 130ns 135ns 140ns
time

a/b a/b a/b a/b a/b a/b a/b
Stream 1 1.546 1.534 1.523 1.511 1.500 1.489 1.478
Stream 2 1,837 1.735 1.679 1.633 1.594 1.557 1.522
Stream 3 1.510 1.492 1.474 1.457 1.440 1.423 1.406
Stream 4 1,439 1.406 1.374 1.342 1.310 1.278 1.244
Stream S  1.442 1.414 1.387 1,361 14337 1.312 1.289
Stream 6 1.312 1,325 1.340 1.349 1.360 1.370 1.380
Stream 7 1.816 1.871 1.847 1.840 1.878 1.893 1.909
Stream 8 1,643 1.624 1.606 1.590 1.575 1.561 1.548
Mean 1.5681 1.3501 1.5288 1.5104 1.,4992 1.4854 1.4720

o (sD) 0.185700 0;183780 0.174243 0,173033 D0.,186398 0.195406 0,206181

o (SE) 0.06565 0.06495 0.06160 0.06118 0.06550 0,06909 0.07290

Optimum cut=off time = 125ns
Best estimate for a/b = 1.510 (*.061)

Corresponding estimate for b/c = 1.400
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(c) -1% assumed measured error in R

Cut=off 110ns 115ns 120ns
time

a/b a/b a/b
Stream 1 1.494 1.485 1,476
Stream 2 1.644 1.616 1.588
Stream 3  1.468 1.454 1.440
Stream 4 1,419 1,392 1.366
Stream 5 1.418 1.395 1.373
Stream 6 1,300 1.311 1.321
Stream 7 1.626 1.638 1.649
Stream 8 1.561 1.549 1.537
Mean 1.4913 1.4800 1.4688
o (SD) 0.115922 0.114924 0.115761
o (SE) 0.04098 0.04063 0.04093

Optimum cut—cff time = 115ns
Best estimate for a/b = 1.480 (}.041)

Corresponding estimate for b/c = 1.611
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Table 17. QDetermination of the optimum cut-off time for Protein 2,
True (a/b, b/c) = (1.7, 1.25)

(a) No assumed error in R

Cut=off 85ns 90ns 85ns 100ns 105ns 110ns 120ns
time

a/b a/b a/b a/b a/b a/b a/b
Stream 1 1,709 1.691 1.675 1.659 1.644 1.630 1.603
Stream 2 1.963 1.926 1.872 1.777 1.716 1.666 1.579
Stream 3 1.670 1.645 1.622 1.600 1.578 1.558 1.520
Stream 4 1.602 1.561 1,523 1.486 1,452 1.418 1.351
Stream 5 1,600 1.566 1.534 1.505 1.478 1.453 1.408
Stream 6 1.482 1.496 1.509 1.521 1.533 1.544 1.566
Stream 7 1.924 1.924 1.923 1.923 1.923 1.923 1.922
Stream 8 1.847 1.803 1.771 14745 1.723 1.703 1.669
Mean 1.7246 1.7015 1.6786 1.6520 1.6309 1.6119 1.5773
o (SD) 0.170801 0,166408 0,161588 0.154362 0.155373 0.159776 0.173689
o (SE) 0.06039 0.05883 0,05713 0,05458 0,05493 0.05649 0.06141

Optimum cut=off time = 100ns
Best estimate for a/b = 1.652 (% ,055)

Corresponding estimats for b/c = 1.305



(b) +1 % assumed measured error in R
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Cut=off 75ns 80ns 85ns 90ns 95ns 100ns 108ns
time

a/b a/b a/b a/b a/b a/b a/b
Stream 1  1.856 1.856 1.856 1.820 1.821 1.767 1.834
Stream 2  1.856 1.856 1.856 1.856 1.856 1.856 1.856
Stream 3 1.856 1.821 1.791 1.732 1.691 1.6358 1.628
Stream 4 1.843 1.728 1555 1.599 1.551 1.508 1.467
Stream 5 1.834 1.716 1.655 1.608 1.568 14532 1.501
Stream 6 1.471 1.492 1.511 1.528 1.544 1.560 1.575
Stream 7 1.856 1.856 1.856 1.856 1.856 1.856 1.856
Stream 8 1.856 1.856 1.856 1.856 1,856 1.856 1.856
Mean 1.8035 1.7726 1.7545 1.7319 1.7179 1.6991 1.6841
o (sD) 0.134604 0.127668 0.131819 0.135561 0.145962 0,153037 0.163378
o (SE) 0.04759 0.04514 0.04661 0.04791 0.05161 0.05411 0.05776
Optimum cut=off time = 80ns

Best estimate for a/b = 1.773 (% .045)

Corresponding estimats for b/c

= 1,0875



(c) =1% assumed measured srror in R
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Cut=cf'f B80ns 85ns 90ns 95ns 100ns 105ns
time

a/b a/b a/b a/b a/b a/b
Stream 1.670 1.656 1.643 1.630 1.617 1,605
Stream 1.936+ 1.861 1.799 14749 1.705 1.665
Stream 1.648 1.628 1.608 14589 1.570 1.552
Stream 1.614 1.576 1.541 1.507 1.475 1.444
Stream 1.606 1.573 1.543 1.516 1.490 1.466
Stream 1.452 1.466 1.478 1.489 1.499 1.509
Stream 7 1.815  1.842  1.870  1.902  1.9367  1.9367
Stream 1,759 1.737 1.716 1.698 1.681 1.666
Mean 1.6875 1.6674 1.6498 1.6350 1.6216 1.6054
o (sD) 0.147596 0,137488 0.,136111 0.142556 0,153928 0.157728
o (SE) 0.05218 0.04861 0.04812 0.05040 0,05442 0.05577
t Upper limit (= b/c = 1.0)
Optimum cut=off time = 90ns

Best estimatse for a/b = 1.650 (*.048)

Corresponding estimate for b/c = 1.3905
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Table 18. Determination of the optimum cut—off time for Protein 3.

True (a/b, b/c) = (1.25, 1.7)

(a) No assumed error in R

Cut—off 80ns 100ns 105ns 110ns 115ns 120ns 140ns
time

a/b a/b a/b a/b a/b a/b a/b
Stream 1 1.367 14315 1.303 1.291 1.278 1.266 1.215
Stream 2  1.881 1.587 1.547 1.510 1.476 1.442 1.313
Stream 3  1.388 1.301 1.281 1.263 1.240 1.219 1.119
Stream 4 1.464 1.285 1.244 1.200 1.151 1.089 1.001
Stream 5 1,448 1.278 1.239 1.200 1.157 1.108 1.000
Stream 6 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Stream 7 1.314 1.393 1.409 1.424 1.439 1.453 1.505
Stream 8 1.514 1.421 1.402 1.385 1.370 1.354 1.297
Mean 1.4220 1..3225 1.3031 1.2841 1.2639 1.2414 1.1813
o (SD) 0.243637 0.165850 0.160554 0.158626 0.161019 0.168224 0.184692
o (SE) 0.08614 0.05864 0,05676 0.05608 0.05693 0.05948 0.06530

Optimum cut—off time = 110ns
Best estimate for a/b = 1.284 (X .056)

Corresponding estimate for b/c = 1.695
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(b) +1% assumed measured error in R

Cut-off 105ns 110ns 115ns
time
a/b a/b a/b

Stream 1 1,319 1.306 1.293
Stream 2 1.618 1.562 1.516
Stream 3 1.294 1.272 1.249
Stream 4 1,247 1.199 1.145
Stream 5 1.245 1.202 1.155 )
Stream 6 1.000 1.000 1.000
Stream 7 1.444 1.462 1.481
Stream 8 1,431 1.412 1.394
Mean 1.3248 1.3019 1.2791

o (sD) 0.181404 0.,176485 0.178272
o (SE) 0.06414 0,06240 0.06303

Optimum cut=off time = 110ns
Best estimate for a/b = 1.302 (X .062)

Corresponding estimate for b/c = 1.5395
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(c) =1% assumed measured error in R

Cut=off 105ns 110ns 115ns
time
a/b a/b a/b

Stream 1 1.294 1.283 14271
Stream 2 1.511 1.481 1.452
Stream 3 1.275 14257 1.238
Stream 4 1,246 1.206 1.163
Stream 5  1.240 1.204 1.165
Stream 6 1.000 1.000 1,000
Stream 7 1.387 1.400 1.413
Stream 8 1.385 1.370 1.355
Mean 1.2923 1.2751 1.2571
o(SD) 0.149250 0.147794 0.149222
o (SE) 0.05278 0.05225 0.05276

Optimum cut=off time = 110ns
Best estimate for a/b = 1.275 (¥ .052)

Corresponding estimate for b/ec = 1.764
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Table 18. Mean values for the retrieved axial ratios compared

with the real values

Retriesved
a b -
(2 2)

Real
(2 2)

B c

Protein 1
Protein 2

Protein 3

(1,501, 1,498)
(1.652, 1.305)

(1.284, 1.695)

(1.50, 1.50)
(1.70, 1.25)

(1.25, 1.70)
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Table 20, Effect of experimental errors in the intrinsic viscosity

and molecular weight

(and hence the product [n]. Hr used in calculating the decay constants

- cf Table 14 and equation 108)

Assumed error in [n]

n n n M
r

t149 total error ~ 1.7 % (calculated
+1,4% from formula given in Paradine & Rivett
-* (1960))

Results are for Protein 1, cut=off tims = 115ns, % 0.1% standard error

on each of the 100 data points

Stream no
* No error

afd:::dom - 1.7% sk + 1.7%
1 1.493 1,503 1.520
2 1.638 " 1,654 1679
3 14455 1.468 1.487
4 1.374 1.396 1.424
5 1.383 1.401 1.425
6 1.305 1.315 1.333
7 1.695 1.694 1.704
8 1.566 14575 1.593
mean a/b 1.4886 1.5008 1.5206
GSD 0.136305 0.132475 0.130253
OSE 0.04819 0.04684 0.04668

= standard deviation

Q
il

standard error



150,

Table 21. Effect of using different initially assumed values for

the pre-exponential factors A'

L

#*
Protein 1, Cut off time = 100 ns, 0.1 s.e. on each of the 100 data paoints

Assumed Retriesved
1 t t t
AL A a/b A, A
0.06 0.06 1.683 0.057 0.064
0.07 0.05 1.674 0.085 0.055
0.09 0.03 1.660 0.083 0.038
0.11 0.01 1.664 8.099 0.021
0.119 0.001 1.644 0.109 0.012

*The data for this table were obtained after the UK NAG Mk VI routines
had been updatéd to Mk VII; the new random number routines corresponding

to GOSADF & GOS5BAF in Mk VI are GOSCAF & GOSCBF



Table 22, Comparison of modsl dependent estimates for Ua with
the real values
* 3
Retrieved Model-dependent Real V_ (em™)
a b 3

( il ) Vg (em™) (cf Table 14)
i ' -18 -19

Protein 1 (1.501, 1.498) 1.131 x 10 1,131 x 10
Protein 2 (1.652, 1.305) 0.889 x 10”12 0.890 x 107 °
Protein 3 (1.284, 1.695) 1,202 x 10712 1211 x 10712

*calculated by determining the value of v corresponding to (-g-, -’9-)

c

and then back substituting into the equation v = [n]Mr/NAUs,

where [n] is in ml/gm

151.



152,

2] S MIN SAMPLE I¥
@ 50 MIN SAMPLE I¥

0.0l
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Figure 39. Birefringence decay (expressed in radians) in Helix Pomatia

hemocyanin solutions. The triangles represent the difference

between the tangential curve (long relaxation time) and the

experimental points. (From Pytkowickz & 0'Konski, 1959)
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Figure 40, Synthetic two-term exponential electric birefringence decay curve

assuming a_standard error of ¥ 0.1° on each data point.

Relaxation times assumed: 28.66ns, 40.10ns
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Figure 41, Plot of the R, 5+ and §_ values obtained from the non-linear least

sgquares analysis assuming birefringence data of machine accuracy
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Bo=6.0

JANVA

v\/v VA

ssnsasanssnnses
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Yy=-InA

Frequency spectrum of X (=1/relaxation time) for a single

exponential decay and By = 6.0, assuming decay data of machine

accuracy (14 figures). The position of the highest peak

corresponds to a value of ) of ,021, in agreement with the

initially assumed value of 0,02




Figure 43 (I - VI)

Effect of increasing u to determine best resolution of the frequency
spectrum corresponding to the decay for Protein 2, for 140 logarithmically

increasing data points of machine accuracy (14 figures)
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Figure 44 (I - VI)

As for Figure 43 but for data of .001° standard error on each of the

140 logarithmically increasing data points
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Figure 45. Knots in the R curves for specification in the R = constrained

lsast sguares analysis (Program 7) for Protein 1
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Figure 46. As for Figurs 45 but for Protein 2
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Figure 47. As for Figure 45 but for Protein 3
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True (a/b, b/c) = (1.5, 1.5)

Figure 48,

2.4

The area marked by dots represents the allowed band of retrieved

axial ratios determined using the new R = constrained least

squares algorithm for Protein 1, Simulated experimental error

of ¥ 0.1° standard error on each data point for the electric

birefringence decay curve was assumed.
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I T T 1 1 T

True (a/b, b/c) = (1.7, 1.25)

Figure 49. As for Figqurs 48 but for Protein 2
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2.0

True (a/b, b/c) = (1.25, 1.7)

Figq;e 50, As for Figure

48 but for Protein 3
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