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CHAPTER 1

The Mass, Size and Shape of Macromolecules in
Solution: The Ellipsoid of Revolution Model




1.1. Macromolecular Structure in Solution

The concept of a unique structure for a biological macromoleculs
in solution and in crystallized form has only relatively recently been
established beyond dispute. Prior to the work of Svedberg the view was
commonly taken (Sorensen, 1930) that proteins and other macromolecules
exist in solution not as unique structures but as dissociable complexss
containing possibly several components, that the equilibrium state was
dependent on circumstances (for example the composition of the solution)
and any components precipitated are not necessarily to be identified with
those occurring in solution. Researchers were consequently surprised at
the ultracentrifuge results of Svedberg and his co-workers (Svedberg &
Pedersen, 1940) which strongly suggested the molecular homogeneity of
many protein systems. Thus, in striking contrast to the polydispersity
of many polymer systems (such as carbohydrates, rubber or polystyrene)
it was deduced that carefully prepared protein solutions contain one, or
at the most a few, different molecular species. This deduction was
derived mainly from the observation that boundary spreading observed in
the sedimentation of protein solutions could be identified with
separately measured translational diffusion coefficients. Bresler and
Talmud (1944) suggested however that a monodisperse protein really
contains a distribution of molecular weights with a sharply defined
maximum. This surmise is, on the other hand, strongly opposed by the
immunological properties of proteins (Alexander & Johnson, 1949)
together with the overwhelming evidence now available from protein
crystallography (Kendrew et al, 1958, Perutz et al, 1960, Blake et al,
1965, Feldman, 1976) which support the idea of discrete individual

structures.



X-ray crystallography is by far the most accurate method for
determining these structures. Unfortunately this technique is also the
most laborious, requiring several researchers working for a period of
months to determine the structure of a single globular protein. The
calculated structures are also of the 'fossilized' form of the
macromolecule which may not necessarily be the same in solution. There
are many techniques available, such as nuclear magnetic resonance,
electron spin resonance, fluorescence and other spectroscopic technigues
which can give much detailed information about the dynamic properties of
localized regions of macromolecules in solution (for example, the active
sites of enzymes are being extensively studied). These techniques
cannot however give informatidn as to the overall macromolecular mass,
size and shape. For this one needs to consider the hydrodynamic
properties of solutions of the macromelecule (although scattering
phenomena can also give useful information), which allows determination
of the molecular weight, simple 'hydrodynamically equivalent'
mathematical models for the structure and also the size (including the

swelling due to solvent association) of the macromolecule.

1.1.1. Mass

The 'inertial mass' of a body can be defined as the quantity of
matter in it, or as the ratio of the force applied to its acceleration
(Newton's 2nd Law of Motion). For a macromolecule we conveniently
express the mass by the 'Molecular Weight' (Nr) which is defined as the
ratio of the mass of the macromolecule to that of one sixteenth of an
oxygen 016 atom, and is expressed in grams.

The mass of fluid displaced by a macromolecule in a solution will



equal the product of the volume displaced and the density of the solution

(MrG/NA)po, where Mr is the molecular weight, N  Avogadro's number, DO the

A
solution density and v the partial specific volume of the macromolecule,
i.e. the volume increase when unit mass (generally one gram) of solute is

added to an infinite volume of the solvent at constant temperature and

pressurs
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The 'Archimedean mass' (i.e. the buoyant mass) of a macromolecule
(Van Holde, 1971) in solution will equal the true mass minus the mass of

the fluid displaced:
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(2)

The molecular weight of a macromolecular solute can be measured from many
methods, for example sedimentation velocity and translational diffusion,
osmosis, light or x-ray scattering, or most precisely from a sequence
analysis. A recent review of these methods is given by Rowe (1978).
The partial specific volume can be found sither from a concentration
determination followed by a densimetric analysis (Kratky et al, 1969,
1973), or for a protein, from Traube's rule (Rowse, 1978). This ruls may

possibly also be applicable to nucleic acids (Pearce st al, 1975).

1.1.2. Size
The size of a rigid macromolecule in solution will differ from that
in the anhydrous states because of associated solvent. The hydrodynamic

or swollen specific volume Gs’ will now comprise of the partial specific



volume, v, the bound solvent that adheres to the hydruphilic particle
surface, and 'entrained' solvent which may be trapped in the various
cavities and indentations in the macromolecule (Figure 1). The ratio
GS/ Vv is known as the 'swelling' of the macromolecule and is equal

to unity if the macromolecule is anhydrous and compact in solution.

The swollen specific volume can be simply relatsd to the "effective"
hydrodynamic volume UB i.e. the swollen volume of a single macromoleculs

in a homogeneous solution:

v M

A | (3)
1.1.3. Shape

Owing to the difficulties in developing theoretical relationships
between the shape of a macromolecule and experimentally measurable
parametsrs, only rather simple 'hydrodynamically equivalent' models are
currently availabls, the boundaries of which can be described by a simple
mathematical equation; these are (Figure 2) rods, discs and ellipsoids
of revolution (Tanford, 1961).

An ellipsoid of revolution is formed by rotating an ellipse either
about the major axis (prolate ellipsoid) or about the minor axis (oblate
ellipsoid) and thus has the necessary restriction that two of the three axes
must be equal. In the limit of large axial ratio, a prolats ellipsoid
(2 minor axes, 1 major) becomes a goaod approximation to a rod whilst an
oblate ellipsoid (2 ma jor axaé, 1 minor) becomes a good approximation to
a disc. Consequently, physical biochemists have tended to use ths
ellipsoid of revolution model to determine the hydrodynamically equivalent
shape of a rigid macromolecule in solution.

It should be made clear at this stage that many macromolscules cannot

be modelled by any of these rigid structures as they have no preferred



structure in solution: these 'randomly coiled' macromolecules can only be
represented by probability configurations. Many other macromolscules have
a well defined rigid structure but cannot be reasonably modelled, judging
from the x-ray models at lsast, by any ellipsoid. The L-shaped Transfer

RNA molecule is an outstanding example (Kim, 1974).

1.2. The Hydrodynamic Properties of a Macromolecular Soclution

The hydrodynamic properties of a macromolecular solution, which are
used to determine these structurss, can be conveniently divided into three
broad classes:

(i) The viscosity property, which concerns the effect of the dissolved
macromolecule on the bulk motion of the fluid when a shear gradient is
applied.

(ii) The translational frictional property, which concerns the movement

aof the: macromolecule through its solution when some form of external force
is applied. This can be a centrifugal field in a sedimentation experiment
or a concentration gradient (i.e. a gradient of chemical potential) in a
translational diffusion experiment.

(iii) The rotational frictional property, which concerns the disorienting
effect on the macromolecule by the local Brownian motion of the surrounding

solvent molecules.

1.3. The Viscosity Property of a Macromolecular Solution

The viscosity of a fluid is a measure of its resistance to flow and may
*
be simply defined for a simple shearing flow (Figure 3) in terms of the

shearing stress ¢ and the shear rate G:

g = nG (4)

* For the equations describing a more general flow see Batchelor (1967).



where n is known as the viscosity coefficient. Ifn is a proportionality
constant independent of the shear rate the fluid is said to be Newtonian.
Howsver, if the constituent moleculss show preferred orientations, this
will alter the retarding forces between adjacent fluid elements and hencse
the internal friction or viscosity coefficient. This non-Newtonian
effect will occur in solutions containing highlyesymmetric or easily
deformable moleculss and at high shear rates (Batchelar, 1967); this forms
the basis of flow birefringence experiments (see 1.5.3). For characterizing
the macromolecule in solution we can set the conditions (i.e. very low shear
rates) so that the Newtonian condition prevails, whereas the chemical engineer
would be more intersested in the general flow propertiss.

Using equation (4) we can simply relate the viscosity coefficient to
the energy dissipation during flow. Writing ¢ as a tangential force per unit

area (F/A) and the shear rate as the velocity gradient ( (dx/dt)/Ay ):

Multiplying both sides by G:

F dx _ 2
AAydt

Since Aldy is the volume of the slement under consideration, then
&> =
' (5)
where <dw/dt> is the mean energy dissipated per unit volume.
The effect of dissolved or suspended macromolecules which are assumed
to occupy a volume ¢ of fluid, is to disturb the streamlines of the
fluid motion and to reduce the volume of the fluid in which the same

overall deformation takes placs. Thus the intsrnal friction, the viscosity
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coefficient and hence the energy dissipated is increased. This increass

can be represented by:

dw _ L2 2
EE':> =G (n-n)=G n v¢ (5)

inc
where n is the viscosity coefficient of the solution and N, that of the
solvent. Rewriting:
n=ng (1 + vo) (7)
Here v is defined as the viscosity increment and is a function of the

shape of the particle. Again, rewriting equation (7):

n
— -1=n vo

U, sp

where nsp is the specific viscosity. This equation only applies to an

infinitely dilute solution in which no solute-solute interactions occur.

For finite concentrations:

= 2 3
= + + *uw
nsp v vid Voo

or, replacing ¢ by ch,whera c is the concentration and GS the swollen

specific volume:

n
& Bl g g & +\)n32
Ned S L zvs € F s wmm
where r}ad is the reduced spescific viscosity. As the concentration

approaches zsro, N tends to a limiting value, known as the intrinsic

red

viscosity, [n] . This can therefore be found by extrapolating a plot of

Tkad versus concentration to infinite dilutinn, and, if the swollen

specific volume, Gs is known (section 1.1.2.), v can also be found:

5 - In] _ {n]Mr
v, Vela (8)
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An approximate value for V can be estimated for 'globular' proteins by
using the partial specific volume v and assuming that GS/ v is ~1.4

for globular proteins. A full review of the experimental techniques for
determining the intrinsic viscosity, [n] is given by Yang (1961).

Einstein (1906, 1911) was the first to determine an explicit value
for v for a specific particle shape, i.e. a sphere, by solving the
equations of motion for the flow using spherical harmonics. His
assumptions wers:

(i) the particles are large enough compared to the solvent molecules

so that the surrounding fluid can be regarded as a continuum and Euler's
(Batchelor, 1967) equations concerning the change of flow through specific
volume elements rather than the compli&ated Lagrange equations for

particle motion can be used,

(ii) the dimensions of the particles are however considered very much less
than the spatial variations in the veloecity flow field,

(iii) the flow rates are small enough so that sguared terms concerning the
velocity (and hence normal stress effects) can be neglected and that the
inertia or mass forces can be neglected.

Using these assumptions and considering the increase in the average
dissipation of energy per unit volume, he found that v = 2.5, and was
independent of particle sizs. This result has been confirmed experimentally
for polystyrene latex spheres by Cheng & Schachman (1955).

Jeffrey (1922) attempted to extend this theory to find v as a
function of axial ratio for ellipsoids of revolution, using ellipsoidal
harmonics to solve the equations for the fluid flow. Owing to the non-
isotropic nature of ellipsoids, the hydrodynamic torgues on the sellipsoids

were shown to have two effects:
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(a) the first effect tends to make the particle rotate on average with

the local undisturbed angular velocity of the fluid,

(b) the second effect tends to orient the minor axis parallel to the flow
for prolate ellipsoids and perpindicular to the flow for oblate ellipsoids.
As a result, the fluid is no longesr isotropic and an energy dissipation
analysis fails to give a unique value for the axial ratio for a given value
of v (Brenner, 1972a). However, if the particles are sufficiently

small the randomizing effect of the Brownian motion of the surreunding
solvent molecules counteracts the orientational tendancy of the
hydrodynamic torque (b) so that the particles are randomly oriented (Simha,
1940) and rotate on average with the local angular velocity of the fluid.
The solution is then statistically isotropic, allowing an energy
dissipation analysis to be used to obtain an unambiguous solution for Vv

in terms of the axial ratio for prolate and oblate ellipsoids of revolution.
Simha (1940) was thus able to obtain a formula which has been shown to give

good agreement with experiment (Mehl, Oncley & Simha, 1940):

n v, 2 2 1"

1 200 7 2 BO (@™ + b7) + ZBO

v o= + & —
5

ab® | 15p2q 15 v I5H%
Q o] [0}

8,'[2a%b°8 " + (a° + b8 "

(9)
where a,b,b are the thres semi-axes of the ellipsoid (b>a for oblate and
b<a for prolats), and the aé ete. which depend on a and b are elliptic
integrals given by Jeffrey (1922) (Appendix I). This relation could be
solved numerically for both cases and a table of values for v as a

function of axial ratio was given by Mehl, Oncley & Simha (1940).
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The function is plotted in Figure 4. In the limit of large axial ratio

p (=b/a)

1/p? . 1/p? 14
Vo~ TS0m(2/p) 37D T SUa(2/p)-i/z) T 15 (Prolate) (18
— ) tan'l(p) (oblate)

15

(10b)

These formulae agree with the independent derivations of Kuhn & Kuhn
(1945) and Kirkwood (1967).

Simha apparently did not assume that the particles were On average
rotating with the local angular velocity of the fluid but with zero
angular velocity. This objection was raised by Saito (1951) who however
obtained exactly the same result (equation 9) despite assuming particles
on average rotating with the same local angular velocity of the fluid.
He suggested that Simha "probably made some srror in his calculation™
without actually finding it. We will show in the next Chapter that Simha
had apparently arrived at the correct result by making the wrong assumption

and then missing out a whole series of terms in his calculation.

1.4. The Translational Frictional Property of Macromolecular Solutes

The sase with which a macromolectle moves through its solution under
the influence of an applied external force field will depend on its shape
and size. The coefficient generally used to describe this ease is the
frictional coefficient, f, defined as the ratio of the frictional force
to the terminal velocity of the particle. Stokes (1851) using spherical
_harmonics again and assumptions similar to Einstein's (section 1.3)

derived the well-known relation between the frictional coefficient f and
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the radius R of a spherical particle:

f = 61TT]OR (11)

whers na is the viscosity of the solvent. Perrin (1936) and independently
Herzog, Illig and Kudar (1934) extended Stokes equation to cover the case

of general ellipsoidal particles:

£ -
£

0 Y3 dA 1
(ahc) J TGZn) (b2+h) (C2+n) 12 (12)
0
wherse FD is the corresponding coefficient for a sphere of the same volume:

i3 ¥

f0 = Gﬂno(abC) = Gﬂno g
(13)

UB is the molecular swollen volume, defined in section 1.1.2. The integral

in equation (12) is elliptic and could only be solved for the special case

of ellipsoids of revolution. For prolate ellipsoids ( p = (b/a)< 1):

2
£ ___(A-p) ;
£ p%tan-l % -1)° (14a)
and for oblate ellipsoids ( p = (b/a) >1)
2

.G -n

A ]_:)%(31:2111—1 (p?-1)°2
(14b)

and can easily be plotted as a function of axial ratio (Figure 5). The
translational frictional ratio f/fo can be measured experimentally either
from a translational diffusion experiment, where ths driving force is a
concentration gradient, or from ultracentrifugation, where the driving

force is a centrifugal field.
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1.4.1. Translational Diffusion

The translational diffusion coefficient, D, is related to the
frictional coefficient, f, at a particular particle concentration, c,

by the relation:

D = %; { 1l +c¢c Biny }

c ac

(15)

(van Holde, 1971), where Y is the 'activity coefficient', a measure of the
concentration gradisnt. Extrapolating Dc to infinite dilution gives the

Einstein relation (Einstein 1905, Tanford, 1961):

£ (16)

By assuming the concentration gradient to be in one direction only, and
applying Fick's laws (Tanford, 1961) for a two-component system, a simple
relation for finding D experimentally can be derived, in terms of the area
under, A, and the maximum height of, H, a concentration gradient (dc/dx)

versus distance (x) curve:

Thus a plot of (A/H)2 versus time, t, in a 'free diffusion of a sharp
boundary experiment' will give DC from the gradient (Tanford, 1961, van
Holde, 1971). Dc can be extrapolated to infinite dilution after repsating
the procedure for several solute concentrations. Unfortunately, few labor-
atories have the apparatus required for an accurate determination of D using
this method. A fast and accurate method for determining diffusion coeffic-
ients has been developed using quasi-elastic laser light scattering (Chu,
1974, Cummins & Pike, 1973, Berne & Pecora, 1974); the fluctuations of solute

particles from the equilibrium state are a function of the diffusion
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coefficients and with adequate instrumentation for signal analysis can be
time-resolved.
From equation (16), the frictional ratio can be found from the

translational diffusion coefficient using the relation

cﬂoc

(17)
where Dn is the translational diffusion coefficient for a sphere of the

same volume and molecular weight:

1A
Do = f = 6mn 3V
o] o] e

KT KT [am}

(18)

1.4.2. Sedimentation Velocity

In a sedimentation velocity experiment, using an analytical
ultracentrifuge (van Holde, 1971), the macromoleculss quickly attain the

terminal velocity, whence

M

L (1-7vo0)ulr=¢£3
NA (1 -v po)w r=f T

where Po is the solution density, r the distance from the centre of
rotation of the solution/solvent boundary, w the speed of rotation and

Nr(1 -V %)/NA the'buoyant mass'! defined in section 1.1.1. Rearranging:

Mr(I - po) g ardde
Ny f wlr | ¢

(19)
where S, is the sedimentation coefficient at a particular solute
concentration. In a sedimentation velocity experiment the movement of
the boundary between solution and solvent is monitored as a function of

time using the property of change of refractive index with change in
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concentration, hence optical techniques such as scanning Schlieren optics
or ultra-violet absorption can be used (Lloyd, 1974). If we rearrange

and integrate equation (19) we find that

¥ = 1 Afnr
¢ w? At

thus by plotting loger versus t and knowing the angular velocityuw , s, can
be found from the gradient. The sedimentation cosfficient 8. is a function
of solute concentration, thus is normally extrapolated to infinite dilution
to give the sedimentation coefficient, s, which is characteristic of any
macromolecular solute. From equation (19) it can be seen that the

frictional ratio P/?O will be given by

S

where S, is the sedimentation coefficient for a compact sphere of the same

molecular weight and volume. From equations (19) and (13):

- - 14
. . M.l - ¥ Pyl _ M1 - vo ) [47,}
) Ny f0 Ny 6ﬂno 3Ve (20a)
and thus the frictional ratio can be found, provided s, Nr, v, Po? Mg
and the swollen molecular volums, Ua ars known:
- o 14
£ - Mr(1 = po) [41T]‘
fo NA 6ﬂn0 S SVe
(20b)

1.5. The Rotational Frictional Property of Macromolecular Solutes

The ability of a macromolecule to rotate under the influence of the
local Brownian motion of the neighbouring solvent molecules will depend on

its size and shape. By analogy with the translational frictional
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coefficient, we can define, fur.rutation about a specific particle axis,

a rotational frictional coefficient, Ci, as the torque which must be
applied to cause the particle to rotate with unit angular velocity. For

a general ellipsoidal particle there will be three rotational frictional
coefficients corresponding to rotation about each of the three axes; for
an ellipsoid of revolution there will be two, and for a spherical particls,
one. Each rotational frictional cosefficeint can be related to a

rotational diffusion constant by analogy with the Einstein relation (1905)

(equation 16):
8, = — (21)

where Bi is defined as the ratio of the mean squared angular displacement
of the axis to the time elapsed (Tanford, 1961). In a typical rotational
frictional experiment an initial orientation of the macromolecule is
produced by some external field. If, for example, the macromolecules in

a solution are oriented with their "a" axis parallel to an orienting fisld
and the field is suddenly removed, the macromolecules will then relax due
to the Brownian motion and tend to assume a random configuration by
rotating about the b and c axes. We therefore conveniently define a

rotational relaxation time in terms of the rotational diffusifon constants

(ab, 8. about the b,c axes respectively) by

(22a)

There will be similar relations describing relaxation of the b and c axes:

(22b,c)
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By analogy with the translational frictional case, Stokss (1880)
using spherical harmonic solutions of the squations of motion with
the boundary condition that the fluid in contact with the particle rotates
with the same angular velocity (i.e. the 'no-slip' condition) derived an
equation linking the rotational frictional coefficient with its

radius, R:
- 3
L = 8wn0 R

(23)
Edwardes (1893) extended this equation to the case of general sllipsoidal
particles. After a correction for a numerical error (Perrin, 1934),

these are:

.- 161rn0 B2 & g2
= 7 p

a 3 b Bo L s
e Lo, c? + a?
= Z 7

b 3 c Yo +a G
) 16nn0 a2 4 B

e 3 c%y + a‘a

) ) _ (24)
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where again the GU etc. are elliptic integrals defined by Jeffrey (1922) -
see Appendix I. The expressions on the right hand side of equations (24)
are functions not only of shape but of volume as well; the corrassponding

rotational frictional ratios however, are not.

*a _ eo 2 b2 + c?
z =3 ° Z, Z
%o ea 3abc b s * BN
% % 2 c2 + a?
r 8 Zz. Z
By Gb 3abc ¢ Y, + 2%
Se_lo_ 2 _a?sp?
z ) 3abc a‘a_ + b4B
0 c o 0

(25)
where Cu (=8-nn0abc) & 80 (=kﬂ/co) are the corresponding coefficients
for spheres of the same volume, and can be found experimentally only

if the swollen molecular volume, UB is known:

Ly = 6n0 Ve ) 60 = kT/GnO Ve

(26a,b)
The corresponding rotational relaxation time ratios are:
a2
o) B 0
0 £+£]
3] )
o} o
%2
% &+E]
6 3]
| o o
o2
% P2,
5 B (27a)
| © 0

h = ” .
where 1/2 8 (27b)
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Unfortunately, as for the translational frictional coefficients, the
elliptic integrals could only be solved analytically for the special case
of ellipsoids of revolution of semi-axes a, b=c (Gans, 1928, Perrin, 1934).
Although numerically equivalent, Gans uses the less manageable
'eccentricity! (e =1 - h/é) rather than the axial ratio (p = b/é), hence

the equations of Perrin are generally used:
fa_ o 20 -9}
ea 3 (1 - p4S)

Sb_Co_2__@a-pY

= e— = e

° b (28a)

where

-1 !
$= (1 -p%)enl[l + (A-p2)°]1/p}
for a prolate ellipsoid (p<1), and
1

S=(p% - 1)72 tan™? [(p? - 1)%]

for an oblate ellipsoid (p>1).

The rotational diffusion ratio Bi/bu (i=a,b) can be related to experimental

parameters using equations (26b):

(28b)
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The corresponding rotational relaxation time ratios were also given by
Perrin (1934) but contained an error of sign invelving 5. The correct

result was given by Koenig (1975):

a _ % _ 20 - p4
o, 9, 3pZ5(2pY - 1]
% 2 a0 -p"
= = T o
° [Ty ) @SN+ 1)
) ) (29a)
o] o

These may be related to experimental parameters by combining equations

(26b, 27b):

i kT

0. 3V €5 (29b)
0 [0 I

All these functions (Ci/co =8./0 > Qi/Qc) are plotted as functions of
axial ratio in Figure 6. It should also be pointed out that, like the
translational functions the rotational diffusion coefficients and
relaxation times are functions of concentration (Riddiford & Jennings,
1967) and should be extrapolated to infinite dilution. The same is also
true for the harmonic mean relaxation time, the birefringence decay
constants and the fluoresesnce depolarisation relaxation times mentioned
below. The various experimental methods for determining all these shape

parameters will now be discussed.

1.5.1. Dielectric Dispersion

The capacity of a condenser filled with a solution of the macromolscule

is measured as a function of the applied sinusoidal voltage across it
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(Edsall, 1953). The 'dielectric increment' or increase in the dielsctric
constant, €, due to the presence of the solute is given by

c
0

C
Ae = g - EO-E;'- E; (30)
where €, is the dielectric constant of the solvent and C, CD and CU

are the capacities of respectively, the solution, solvent and vacuo.

At sufficiently small frequencies, the dipolar macromolecules can kesp

pacs with the alternating field, and the dielectric constant will remain

at its 'static' value. At sufficiently high fields, the rotation of the
macromoleculs about a particular axis will no longer follow the field and
its contribution, Ae_ to the dielsctric constant is that of a non-polar
substancéd (Dncley, 1940); thus over a certain critical rangs

characteristic of the size and shape of the macromolecule, the dielectric
constant decreases as the frequency increases. The frequency corresponding
to the mid-point of the dispersion curve is known as the 'critical
frequency'. For a general particle with three rotational relaxation times

0y Oy Og2 there will be three critical frequencies:

v, = ZﬂQa ' Vg, © Zﬂpb > ®, 2 ZWQC

(31)
For an ellipsoid of revolution thers will be two (since o = pc) or one,
either if the dipolar axis is parallel to the rotation axis of symmetry
or for a spherical particle. Typical dielectric dispersion curves for
ellipsoids of revolution of various axial ratios are shown in Figure 7
(from Oncley, 1940)

Even in the most favourable case, 9 = 450, resolution is poor for

axial ratios less than 9 (Squire, 1978). Application of this method is
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also limited by the fact that, due to electrode polarization, only
solutions of low ionic strength can be used, thus restricting the use

to proteins of high solubility.

1.5.2, Electric Birefringence

Polarized light incident on a solution of macromolecules oriented by
an elctric field will be split into perpéndicular components because the
rafractive index will be different for directions parallel and
perpgndicular to the electric dipole moment (Benoit, 1951). The solution
is then said to be birefringent and the amount of birefringencs will
depend on the nature and concentration of the macromolecules.

The decay due to Brownian motion of the birefringence when the field
is suddenly switched off is most interesting since this will be
independent of the electric properties of the macromolecules (apart from
the initial amplitude of the decay) but dependent on their size and
asymmetry, assuming the solution to be homogeneous. The solution must
be rendered homogeneous by, say, ultracentrifugation for removing larger
impurities, followed by gel filtration for fine purification. The number
of terms in the exponential decay will be dependent on the particle
asymmetry, assuming that the particles are small enough so that ths
Rayleigh - Gans - Debye scattering theory applies (i.e. particle dimensions
less than A/20). Ridgeway (1966, 1968) has shown that a general particle
will have two relaxation times, T+, T or two decay constants, 6+ (=1/ET+),

6 (=1/61):

(32)

where 4n is the birefringence, N is the number density of particles in
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suspension, n, the refractive index of the solvent and A, complicated

2
expressions depending on the initial particle orientations and their
dielectric and diffusion properties. Unfortunately, although Ridgeway
provided relationships linking 6, with the size and shape of general
tri-axial ellipsoids (see Chapters 3 and 4), anly.nna relaxation time

has been resolved from the experimental exponential decays for homogeneous
solutions. Thus the method has been restricted to ellipscids of revolution

(a_ = 0) for which Benoit (1951) had shown previously that, for an initial

birefringence L

(33)
assuming the electric dipole axis coincides with the rotational axis of

symmetry. For spherical particles thers would be no birefringencs.

1.5.3. Flow Birefringence

The aligning field can also be produced, if the macromolecules are
highly asymmetric, by large flow velocity gradients in the annular space
between two concentric cylinders, one rotary and one stationary (van Holde,
1971, Squire, 1978). The orientation of the macromolecules will again be
opposed by rotational Brownian motion, and for a constant shear rate, there
will be an equilibrium distribution of orientation states. Results for
early studies are discussed by Cerf and Scheraga (1952) and by Tanford
(1961). This method has the advantage that the steady state birefringence
can now be used to derive shape parameters, since this will be independent
of the electric properties of the macromolecule. However, the method has the

serious disadvantage in that relaxation experiments are virtually impossible,
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and also the use is restricted to highly asymmetric molecules (Sgquire, 1978).

1.5.4. Fluorescence Depolarization

This method applies to those macromolecules that possess a fluorescent
group or a chromophore (Cantor & Tao, 1971). If an slectron in a chromophore
is excited to a higher energy state by the absorption of radiation, then
instead of the ensrgy being dissipated non-radiatively in the form of heat
as it returns to the ground state, it loses only part of its energy as heat
as it returns to the lowest vibrational level of the excited state, but then
re-radiates the rest. This will necessarily be of lower energy (hence longer
wavelength) than the incident radiation. This phenomenon is called
fluorescence.

If the macromolecule is irradiated with polarized light, and if, in the
10-8 to 10-7 seconds it takes for the energy to be re-radiated the
macromolecule has changed its orientation due to Brownian motion, there will
be a net depolarization of the incident light. If the solution is
continuously irradiated then a steady state depolarization will be reached
depending on the ratio of the fluorescence decay time, t* to the harmonic
mean of the three rotational relaxation times (equations 27), Ty (Perrin,

1934):

(34)
P is the polarization (i.e. the ratio of the difference in intensities of
light polarized parallel and perpindicular to the incident beam to their sum),
PD is the intrinsic polarization of the fluorescence (the polarization that

would be observed if no rotation had occurred) and T, is defined by

h
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1 1 [1 1 1}
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(385)
for general ellipsoids, or for ellipsoids of revolution (gh = gc):

1 1 [1 2]

.73 o ol

h a9

The harmonic mean relaxation time ratio Th/ T, can thus be plotted as a
function of axial ratio (Figure 8), where By is the corresponding

coefficient for a sphere of the same molecular weight and volume:

. 37%>Ve
) kT
(36a)
Thus Th/ T_ can be related to experimental parameters by:
Eﬂ.= kTrh
T, 3nOVe
(36b)

Equation (34) is not particularly useful as it stands, since neither P,

nor T, are known. If T, is approximated by Th~Tg (i.e. = SnOUe/kT) then:

AERIaE B~

If measurements are then made in solutions of varying viscosity (for

example by adding glycerol) and/br temperature, (1/b -1/3) can be

plotted against T/nu, 1/'PD can be found from the intercept and hence T,
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from the gradient, assuming 1* can be found independently. A major
disadvantage of this method is that by adding glycerol or changing the
temperature the swelling due to solvation may be altered: also an
independent estimate for t* is required.

A more accurate method in principle is nanossecond fluorescence
depolarization decay (Cantor & Tao, 1971). Here the solution is
irradiated with polarized light pulses of very short duration (~1ns).
The anisotropy, A is measured by determining the intensity of emission

polarized parallel to (I,) and perpindicular to (I,) the incident pulse:

oL-u
- I“ * 2I_L

(38)
For a rigid spherical macromolecule, the anisotropy decay is described

by a single exponential term (Jablonski, 1961)

—t/ro
A(t) = Aoe
(39)
with Ty = My Ue/kT. For a rigid ellipsoid of revolution, Memming (1961)
and Wahl (1966) have shown that the aniseotropy is a sum of three

exponential terms:

-t/'l:1 ~t/12 —t/T3
A(t) = ae +a,e + agze
(40)
where
r = & o 1 i 5 1
1 66 ? 2 58, + 8 2 3 28, + 48

b b a b a (41)
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The fluorescence decay time ratios are plotted in Figure 9 where To is
the corresponding coefficient for a sphere of the same molecular weight

and volume:

2
. nove ) 4wn0ab
o kT 3kT

Thus the fluorescence anisotropy decay time ratios can be related to

experimental parameters by

Es kTT.
To = ;3:’; (j=1,2,3)

(42)

o, and hence the

The values of the component amplitudes Gpy Gpy Og

dominant relaxation time will depend on the angle between the transition
moment of the chromophore to the rotation axis of symmetry of the ellipsoid
of revolution. Unfortunately, resolution of a multi-term exponential decay
into its components is notoriously difficult (Jost, 1978), sven for
relaxation times differing in orders of magnitude; this is coupled to the
problem that the observed decay will be a convolution of the finite cut-off
time of the incident pulse, the fluorescence decay and the anisotropy decay.
There are also more serious problems:

(1) since the fluorescence itself decays within about 10ns, only molecules
with very short relaxation times can be investigated,

(ii) most macromolecules do not contain a chromophoric group such as
tryptophan; thus one must be introduced. This may significantly alter the

true conformation of the moleculse,
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(iii) even if the macromolecule contains tryptophan, the decay is not
perfectly exponential, due to interference between the side chain and
the indole ring,

(iv) rotation of the chromophore, or of a fragment of the macromolecule
to which the chromophore is attached, with respect to the rest of the
macromolecule may occur: Munro et al (1979) have given evidence for

internal rotation of the tryptophan residue in Staphylococcus aursus

nucleass B (I‘lr = 14,100) and Pseudomonas aeruginosa azurin (Mr = 14,000).

1.6. Scattering

Absorption and hence fluorescence phenomena can only occur when the
frequency of the exciting radiation is the same as or near to that of an
allowed transition frequency of the molecule. However, at other wave-
lengths elsctro-optic interaction can still occur; the electric vector
of the incident radiation polarizes the molecule by attracting the
nuclear mass and repelling the electron clouds. The frequency of
oscillation of the incident radiation is the same as that of the induced
oscillating dipole; however, the waves emitted are by Huyghens principle
spherical and hence the radiation is scattered in all directions.

The scattering by a solution of macromaolecules is mast rigorously
analysed by considering the local concentration fluctuaticns_of the
solution; however, if we consider the particle as small compared with the
wavelength of the incident light and the solution to be so dilute so that
each particle can be considered independently, relations can be derived
between particle shape in terms of the 'radius of gyration' (Tanford,
1961) and the scattering (van de Hulst, 1957). For small particles (<A/20)

interference effects between radiation scattered by different parts of the
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macromolecule can be neglected, and the following relation between

molecular weight, Mr and the scattering can be derived:

He 1
- =ﬁ_+ 2B.c
T

Ed
where ¢ is the particle concentration, H is the scattering constant
(@ X4, and the square of the refractive index increment, dn/dc),
B the second virial coefficient and T is a measure of the relative
scattering perpindicular to the incident beam (i.s. the fraction of light
scattered (van Holde, 1971)). Hence if Hﬁ/T is plotted versus
concentration, the molecular weight can in principle be determined from
the intercept. For large particles (d-l/?ﬂ) destructive interference
occurs between light scattered from different parts of the macromolsculs.
Light scattered in the forward direction cannot however be subject to
destructive interference. Unfortunately this cannot be viewed directly,
but if the scattering is studied over a range of angles it can be
extrapolated to the forward direction. This involves extrapolating to
zero-angle and to zero-concsntration using the so-called Zimm plot
(Zimm, 1948, Stacey, 1956, Tanford, 1961). The slope of the c=0 line
gives the radius of gyration of the particls, RG’ i.e. the mean extension
of mass from the centre of gravity. For a sphere of radius R, RG = /§7E1R,
and for a large rod of length L, RG = Q/VTE y thus light scattering can be
used to obtain information about conformation in solution, where particular
models for which R can be specified are applicable. Holtzsr and Lowsy
(1956) showed by this method that L = 1500 ﬂ if myosin could be reasonably
modelled by a long rod. Martin (1964) has shown that the radius of gyration
can be related to the axial ratio of the equivalent ellipsoid of

revolution provided that the swollen volume is known:
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24 .
R2 - av, 5p"3 + 4p'2’3
T 4m 15

(43a)
for a prolate ellipsoid and
»  [3v 7 [ up -
R = € p__*+2p
G 4 5
(43b)

for an oblate ellipsoid.
An explicit relation relating RG to axial ratio alone can be found by

'reducing' it

13 3
R . [4r) o | 52% v ap”
red sveu G 15
(44a)
for a prolate ellipsoid and
Y3 4 3
A =282
(Rg) [4w R oo [P+
red 3V G 5
(44b)
for an oblate ellipsoid.
This is plotted in Figure 10. Experimental determination of (RG)red

requires of course a knowledge of Ue'

The same analysis can be used for lassr light scattering as this
gives good time resolution for rapidly changing solutions (for example
aggregation of macromolecules, randomly coiled macromolecules). However

a major difficulty with all light scattering experiments is that all
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solutions, glasswars etc., must be dust free; removal, wi£huut damage to
the biological solute, poses great difficultiss. Due to diffraction
affects it is also difficult to measure scattering angles less than

about five degrees, thus a clear extrapolation to zerc angle may not be
possibls. Another major difficulty is that, since the resolving power
depends on (RG/A)Z, the method fails for macromolecules below about 100 g
(although Nr may still be found). Reducing the wavelength of the
incident radiation does not help (until down to the x-ray region) since
below 200nm most biological materials absorb very strongly. A method of
low angle x-ray scattering (LAXR) has alsﬁ been developed (Beeman st al,
1957). However, due to very strong diffraction and interference effects,
thé scattering is almost entirely confined to a very narrow wavelength
range. On the other hand, it is possible to collimate the x-ray beam much
better than a light beam, thus measursments can be made to a low enough
angle to a more reasonable extrapolation to zero angle.

Deductions about the size and shape of macromolecules from scattering
information is gensrally restricted howsver, since any simple interpretation
af the radius of gyration must assume that the macromolecule is homogeneous
(uniform electron density). If, therefore, ths particle contains fluid
filled cavitiss or indentations or a monolayer of bound solvent, the
dimensions of aﬁy assumed model calculated from the HG will be incorrect.
This problem does not apply to the determination of the hydrodynamic shape
parameters considered previously since these phsnomena do not depend on

interactions with or properties of the interior of the macromoleculss.

1.7. The Problem of Swelling dus to Solvation

In order to detsrmine from experimental data the ellipsoid



of revolution shape functions mentioned so far, a knowledge of the

swelling due to solvation (i.e. Ua) is required:
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(8)

(20b)

(28b)

(29b)

(36b)

(42b)

(44)

The first significant attempt at dealing with this problem was due

to Oncley (1941) using a graphical analysis: If Ue is fixed then a single

value of the shape parameter being considered will correspond to a single

value of the axial ratio. If, howsver, Ua is assumed to have a range of

possible values, then a single value of the shape parameter will have a
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'line solution' of possible values of the axial ratio. This is shown in
Figures 11a and 11b for the viscosity increment and translational
frictional coefficient. However, if line solutions for two or mors

of the different shape parameters are compared, then in principle a
unigque value for the axial ratio and effective volume can be found from
the intersection. On the other hand, in practice these curves could only
be made to intersect by imposing large experimental errors on the data,
and in one case - pepsin - the curves do not cross at all (Figure 12).
Here Oncley uses as his abscissa the 'hydration factor' w, related to

the effective volume, ’u'9 by:

Wep (-0 =0 |AE T

A different approach would be to eliminate Ua simultaneously by
combining any two of the shaps parameters together. The effective volume
can then alsoc be found by back substitution into the equations. This
naturally assumes, as does the Oncley approach, that the axial ratio and
the swelling are the same for both types of experiment. Scheraga and
Mandelkern (1953) combined equations (8) and (20b) to produce a swelling-

independent function B (Figure 13):

13
B = NA vy%
(16200n2)7% /%,

(45a)

or in terms of experimental parameters, from

Ny s[nl ¥,

BB
Mr%@(l - \}pO)looV3

(45B)
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where [n] is in ml/gm. Scheraga and Mandelkern also combined equation (8)
with equations (28b) to produce swelling independent 84 and 8 functions

(Figure 14), although in their original paper, only db is given:

z 6. 6n 8, [n]M_

60 NA kT

I

1 .
1

(46)
(i=a,b)
Scheraga (1961) later combined (20b) with (28b) to produce swelling

independent u_, u_ functions (Figure 15) although again only u, was given:

i3 23 o

24 N, (kT) ~ n 25 n 43

ui=[_fo][C-J53w”35. A ~o___31r D [o
6. Mr(l - vpo) ]

(47)
(i=a,b)

Squire et al (1968) combined equation (20b) with (29b) to produce swelling

independent Yy and Yy functions:

3 -
el g e
i san2NkT  shn g,
(48)
(i=a,b)
Squire later (1970) combined (20b) with (36b) to gwe a swellcy

independent ¥ function (Figure 16)

s -
. [IEJ [_f_] :[41’”]0} Mr(_l - Vpo) _i_ 1/3
T fo “{ kT ) 6'rm0NAs T

(49)
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Plots of the Squire Y, and Yy parameters as functions of axial ratio are
given in Figure 16. A similar swelling independent function can be
obtained by combining the viscosity increment, equation (8) instead of

equation (20b) with (36b) (see Appendix II and Harding, 1980a):

L1}

[To] y S, (0™

(50)
(Figure 17). Also, by combining equation (8) instead of (20b) with
equation (29b), swelling independent € & functions are produced
(Figure 18):
L N
i es NA kT e;
(51)
(i=a, b)

By combining (8) with the fluorescence anisotropy relaxation times (42b)

three new functions, Kys Kys Ky aTe produced (Figure 19):

) EE__ no[n]Mr -
Ky =V 1. TN KT t. (j=1,2,3) (52)
J A J

Alternatively, combining equation (20b) with equation (42b)(Figure 20):
3 - = e S R S —
o ES

£) To m’(1-vp.)
fo T ibllU; szn?‘?}:'S" T;

(J = 1}_2/3]

£, =

J (53)

J
As far as the author is aware, the A, Ei’ Kj and Ej functions are new
and have not been published before. These functions are tabulated for
axial ratios betwsen 1 and 10 (Table 1).

Martin (1964) eliminated the requirement of knowledgs of the swollen

volume for scattering experiments by combining (44) simultaneously with
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gither the translational frictional function (Figure 21):

1
2

44 %7
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|
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(oblate ellipsoid)

or the viscosity increment (Figure 22):

1

2
L = R _ 75 (sp™ s ap® 1
h I3 1A ™ 15 « 78
[n] "M, A

(prolate ellipsoid)

(oblate ellipsoid)

where p is the axial ratio defined in section 1.4.
The molecular covolume has also been given as a function of shape
and swollen volume by Nichol et al (1977) for prolate and

oblate ellipsoids

(54)
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where the ellipticity e is related to the axial ratio by

for prolate ellipsoids (b<a), and

= 2.
g€ = 1 - b2

for oblate ellipsoids (b>a). By 'reducing' U we obtain a function Ursd

in terms of shape alone:

~1
U 3 1 + sin "¢
gt - 2 e
red N V 3
A e 2 e(l-a2)2
1 - g2 1+¢
Pl mire] (55)

The covolume U can be found from a sedimentation eguilibrium experiment
in terms of the activity coefficient, as outlined by Nichol et al (1977)
although in order tﬁ determine Ured’ a knowledge of UB is still required.
Nichol et al (1977) however eliminated Ue by solving equation (55)
simultaneously with the translational frictional ratio (equation 20b) to
produce the swelling independent y function (not to be confused with the

Squire ¥ function)

3 Un3N, s

1b=

Ured F&%

. 3 - 3
2 " :
162n2 (£ Mo (1 - ve )

(56)
As seen from Figure 23, ¥ has the advantage that no prior decision has
to be made as to whether the macromolecule is better modelled either by
a prolate or oblate ellipsoid. Unfortunmately, for typical globular

macromolecules (small axial ratios), the parameter is still very
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sensitive to experimental error: this is clear from Nichol et al's

results for ovalbumin, whose axial ratio they found to be 2.5:1 with

a standard error of 3. This is largely due to the large number of

terms on the right hand side of equation (56), several of them cubed.
Ured can of course be combined with any of the equations (8), (20b),

(28b), (29b), (36b), (42b) to eliminate V,. For example, if (55) is

combined with the viscosity increment (8), a new swelling independent

function is produced (Figure 24) (Harding, 1980b):

v = [n]Mr
(57)

Values of the I function for various &xial ratios are given in Table 1.
The results for hemoglobin are in sxcellent agreement with these found

from x-ray crystallography (see Appendix III).

1.7.1. Hydrodynamic non-ideality: the R function

The viscosity, translational frictional and rotational parameters
considered so far are normally those extrapolated to zero concentration
in order to negate the effect of the net volume excluded by the particles
and soclute-solute interaction. However, the nature of the concentration
dependence of these parameters, particularly the sedimentation coefficient
"s" and the reduced spscific viscosity, ns c, has now been shown by Rowe
(1977) to give valuable information as to the conformation and swelling
in solution and also an estimate of the "goodness of fit" of an ellipsoid
for the macromolecule in solution.

The variation of s and nsp/b with concentration can be represented
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by regression parameters ks’ and knz

S. = s(l - ksc) (58)
SR o )k (59)
c n

where ks and l<n are, respectively, the sedimentation and viscosity
concentration regression coefficients. These approximate linear
equations are valid only for dilute solutions. A universal equation has
been derived by Rows (ses Appendix IV.) for all solute concentrations up

to ¢p’ the critical packing fraction:

e _ £, [n]

—_—=—= =1 - gc

s f nsp c
(60a)

where
ke - (26 - 1)(cv_/9)°
ge = E_ 2.0
ke - 2V§L+ 1

(60b)

where k=kS (sedimentation) or kzkn (viscosity). This provides a more
accurate method for extrapolating to infinite dilution to obtain [:n]i
and "s", and also for finding ks and kn s from a given set of data, by

minimi sing:
_ = 2
{wi[si f(ki’us’s’ci’¢P) ]}

(ui = weight) (61)
This procedure is unstable if ks, Us and s (or the corresponding viscosity
parameters) are all taken to be independent variables. Howevsr, if we

assume Us = ks/4 for globular proteins, or assume US from the ratio Us/ v
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= k;1/ké, where k}‘ and k; are the parameters found from the approximate
fit (equations 58 & 59), a stable fit may be found.

Rowe (1977) has shown that the swelling, Us/ v , can be found from:

v k
S -_1
v k
s
(62)
Therefore
M.v, M, ko
vV = == .= .V
€ Na Ny K
(63)

The value of Gs/ v and hence Ue thus found is independent of any assumed
model for fha protein. Since the determination of UE by back substitution
into the equations given at the beginning of 1.7. after the axial ratio has
been determined is dependent on the model chosen (i.e. an ellipsoid of
revolution), an estimate for the "goodness of fit" of an ellipsoid of
revolution is now available by comparing the model dependent UE with model
independent V_ (or, eguivalently, Gs oT Us/ v).

This theory also provides a new shape function "R", which is

independent of particle swelling:

~
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< |
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=
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(64)
Wales & Van Holde (1954) had previously rsported that the ratio ks/[n]
was some unknown function of shape and equal to 1.6 for spherical
particles; this agrees with that predicted by equation (44) (Figure 13).
R varies rather rapidly with axial ratio for ellipsoids, sven for low
axial ratio, and this function provides a precise method for

characterizing the axial ratio of relatively symmetrical particles.
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Besides its greater sensitivity than the g function (or the ¥ function),
R has several other advantages:

(1) unlike B computation of R does not require knowledge of the absolutse
solute concentration (Rouwe, 1977)

(2) less data is required to compute R and hence the error in the fipal
function is minimized. As rotational parameters are generally very
difficult to determine, as will be evident from the sarlier parts of this
chapter, the R function is also to be preferred over swelling indspsendent
functions involving thsse. The R function is also to be preferred over
the scattering Y and o functions mainly because of thes particle
homogeneity problsm mentioned in section 1.6. The B8 function can still
however be useful, precisely because of its lack of variation Pﬁr oblate
ellipsoids, in deciding whether the macromolecule is better modelled by
either a prolate or an oblate sllipsoid. Experimental values for B and
ks/[n] (=R) have been tabulated for a wide range of protsins by Creeth

& Knight (1965). Values of 8 below the theorstical minimum of 2.112 x 106
and above 1.6 for R may indicate that some proteins cannot be modelled by an
equivalent ellipsoid of revolution. This has been suggested for Bovine
serum albumin (BSA). A table of values of axial ratio calculated from
the R function for recent data, together with a comparison of their
'model dependent' estimates for GS/U with their 'model independent!
estimates to determine the 'goodness of fit'! of an sllipsoid of

revolution, is given in Table 2.

1.8. Comment
Although a hydrodynamically equivalent ellipsoid of revolution
model can now be fitted with much greater precision to many rigid

macromolecules with the aid of the R function (and possibly the I function)
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the distinction still has to be made as to whether the macromolecule
is better modelled either by a prolate or an oblate model, It is clear
from a perusal of the crystallographic models of many globular proteins
such as carboxypeptidase, myoglobin and ribonuclease (Table 3) that in
many cases this is quite arbitrary and indeed in some cases is
impossible

It would be a significant step forward therefore if the restriction
of two equal axes on the ellipsoid were removed to allow use of the more
general tri-axial ellipsoid. However, either due to the lack of the
theoretical relationships linking the axial dimensions of the ellipsoid
with experimental parameters, or, even if they are available, due to the
lack of the necessary expsrimental precision, numerical inversion
procedures or data analysis techniques, this model has not, to date, been
available. The aim of the rest of this thesis is to show that the general
tri-axial ellipsoid can now be successfully employed to model bioloéical
macromolecules in solution. We will start by deriving the tri-axial

viscosity increment squation.



Table 1. Values of A, Eg’ 1 Kq2 Kpr Koy &9 Eo9 £ and T for

prolate and oblate sllipsoids of revolution

45.

g 2 3 4 5 6 7 8 5 10
ratio
Ah 2,500 2,490 2,692 3.071 3.575 4.177 4,862 5.624 6.457 7.359
Ao 2.500 2,356 2,187 2.070 1.989 1.931 1.887 1.854 1.827 1.805
Ea,p 2.500 1,932 1.574 1,373 1.251 1.1717 1.115 1.3075 1.044 1,020
ea,a 2,500 2,522 2,343 2,202 2,102 2.029 1.974 1.931 1.896 1.868
Eb;p 2,500 2,768 3f250 3.920 4.737 5.679 6.736 7.899 9.164 10.528
Eb;o 2,500 2.273 2.110 2.003 1.932 1.882 1.844 1,815 1.792 1.774
K1;p 2,500 1,932 1.574 1,373 1.251 1.171 1,115 1.075 1.044 1.020
K1,g 2,500 2,522 2,343 2,202 2.102 2.029 1.974 1.931 1.896 1.868
kz’p 2,500 2.211 2,133 2,222 2,413 2,674 2,989 3.349 3.751 4.189
K2,o 2.500 2.439 2,265 2.136 2.045 1.980 1.930 1.892 1.862 1.837
Kz,p 2.500 3.047 3.809 4.769 5.899 7,182 8.609 10.174 11.871 13.698
KS’G 2.500 2.190 2,032 1.937 1.875 1.832 1,801 1.777 1,758 1.742
51’p 1.000 0.756 0.588 0.487 04421 0,374 06340 0,313 0.292 0.275
51,0 1.000 1.000 0.920 0.860 O0.818 0.787 0.763 0.745 0.731 0.719
Ez,p 1.000 0.865 0.797 0.788 0.811 0.854 0.911 0.976 1.051 1.129
Ez,n 1.000 0.967 0.89C0 0.834 0.796 0.768 0.747 0.731 0.718 0.707
gS;p 1.000 1.192 1.423 1.691 1,983 2.295 2,623 2.966 3.322 3.690
ES,D 1,000 0.868 0,798 0,757 0,729 0.711 D.697 0.686 0.678 0.671
Hp 3.200 3,122 2,960 2.778 2.601 2,438 2,291 2,159 2.041 1,935
Hn 3.200 3.180 3.179 3.192 3.208 3,225 3.241 3.255 3.268 3.280
subscript p: prolate ellipsoid

o: oblate ellipsoid



Teble 2. Use of the R function to predict the conformation of various macromolecules in solution
in terms of an ellipsoid of revolution model

k K madel model
Protein s n [0 R axial dependent independent Conclusion
ml/gm  ml/gm ml/gm ratio (ua/;) (Ua/;)
1 : * + * .'.
Apoferritin 8 12 5.16 1.55 1.45 2.6 1.5 spherical
BSA> 5.5 7.7 2,75 2.0 — — 1.4 not a hydrodynamic
: ellipsoid (ef B<
2.1)

Fibrinogen3 7 14 7.8 0,9 6.3+ 1.1+ 2.0 prolate ellipsoid
~6:1. Agrees with
electron microscopy
(Hall & Slayter,

1959)
4 e ah podYs qot .

C—-protein 1 15.4 12,6 0.87 26.0,6.65Y 0,9,2,12 1.4 oblate ellipsoid

’ . ~ 2531
P’lyuain5 85 92 234 0,38 T - 4.3+ 1.1 not hydrodynamic
6 r + ellipsoids of

Synthetic A~filaments 160.8 366 176 0.9 19,5 16 2,3 revolution

Collagen aonicatea7

(1) Nr = 352,000 : 3os B8O 1252 0,246 BU+ 2.28+ 2,85 prolate~8031

(i1) Nr = 330,000 291 756 1078 0,270 _54* 2.85~+ 2.60 prolate ~65:1

1
(1i1) m_ = 273,000 241 564 639 0,377 307 6.12t 2,34 not hydrodynamic
g I ¥ ellipsoids of
(iv) m_ = 227,000 193 428 400 0,483 18 9.13 2.22 revolution

" _
1 prolate ellipsoid, oblate ellipsoid. Refs: 142 Rowe & Pancholi (unpub.), 3 Rowe & Mihalyi (unpub.)
4 Offer et al (1973), 5 Emes (1977), Emes & Rowe (1978a), 6 Emes (1977), Emes & Rouwe (1978b),

7 from Nisihara & Doty (1958)

‘gy
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Table 3. Crystallographic dimensions of some globular proteins

Protein Dimensions (R) Refersence
Carboxypeptidase 50 x 42 x 38 Lipscomb (1971)
Myoglobin 43 x 35 x 23 Kendrew et al (1958)
Cytochrome c 25 x 25 x 35 Dickerson & Geiss (1969)
Lysosyme 45 x 30 x 30 Blake gt _al (1965)
Ribonuclease 38 x 28 x 22 Kartha et al (1967)

Pre = albumin 70 x 55 x 50 Blake et al (1978)
Hemoglobin 64 x 55 x 50 Perutz et al (1960)
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Figurs 1. A macromolecule in solution is generally

swollen due to solvent association
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U
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Figure 2., Mathematical models for macromolecules in solution
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.
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b of revolution
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length of arrows are proportional to
the fluid velocity at that value of y

Figure 3. Shearing of a Newtonian

fluid between parallel

plates (from Van Holde,
1971)
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Axial Ratio

Figure 4. Plot of the viscosity ;pcrement as a function of axial ratio

for ellipsoids of revolution
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Figure S, Plot of the translational frictional ratio (the "Perrin

function") as: a function of axial ratio for ellipsoids

of revolution
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Figure 6, Plot of the rotational diffusion coefficient ratios and

rotational relaxation time ratios as a function of axial

ratio for ellipsoids of revolution




Figure 7. Dielectric dispersion curves for prolate ellipsoids of

revolution. Constant dipole angle ( 6= 450) and varying

axial ratio (a/b from 1 to 50)., From Oncley (1940)
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Figure B. Plot of the harmonic mean rotational relaxation time ratio

as a function of axial ratio for ellipspids of revolution
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Figure 9. Plot of the fluorescence anisotropy relaxation time ratios as

a function of axial ratio for ellipsoids of revolution
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Figure 10. Plot of the 'reduced! radius of gyration as a function of
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axial ratio for elliescids of reveolution




Figure 11. (a) Values of axial ratio and hydration as a function of

\’(US/V) . Contour lines denote values of w(Vg/ V)

(b) As above, but as a function of (f‘/f‘D).(US/V)VS.

Contour lines denote values of (1“/1’0)..('\7$/3)1/3

(from Oncley, 1941)
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Figure 12. Asymmetry and hydration (i.e. solvent gssociatinn) of

certain protein molecules. (from Oncley, 1941)
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Figurs 13. Plot of the Scheraga & Mandelkern 8 (x 10-6) and Rowe R functions

versus axial ratio for ellipsoids of revelution
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Figure 1 Plot of 6a and 5b as functions of axial ratio for ellipsoids

of revolution
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Figure 15, Plot of My and M @s functions of axial ratio for ellipsoids

of revolution
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Figure 16. Plot of Yar Yy and ¥ as functions of axial ratio for ellipsoids

of revolution
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Figure 17. Plot of A as a function of axial ratio for ellipsoids

of revolution
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Figure 19. Plot of Kee Ky and K as functions of axial ratio for ellipsoids
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Figure 20. Plot of 51, 52 and 53 as functions of axial ratio for ellipsoids
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