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Synopsis 

The use of the general (tri-axial) ellipsoid as a model for the conformation of biological 
macromolecules in solution is discussed. The recent derivation of an expression for the vis- 
cosity increment of dispersions of tri-axial ellipsoids [S. E. Harding et al. (1979) IRCS Med. 
Sci. 7,33; and (1981) J.  Colloid Interface Sci. 79,7-131 makes the fitting of such a model 
possible by the derivation of appropriate volume-independent functions. We now derive 
these volume-independent functions for tri-axial ellipsoids and investigate by exhaustive 
computer simulation the possibility of deriving the two axial ratios (a lb ,  b /c )  from data of 
various types, in every case containing plausible experimental error. It is shown that transport 
properties alone cannot be used to yield estimates for the axial ratios, given current experi- 
mental precision. However, a combination of transport and rotational diffusion properties 
is more promising, and an algorithm is developed and tested that will reliably yield estimates 
from simulated data obtained by the methods of sedimentation, viscosity, and electric bire- 
fringence. 

INTRODUCTION 

The most general and almost ubiquitously applied shape for modeling 
biological macromolecules in solution has been the ellipsoid of revolution 
model (Le., an ellipsoid with two equal axes).1-5 For globular proteins, a 
much better model, in principle at least, might be obtained if the restriction 
of the two equal axes on the ellipsoid were removed to allow use of the more 
general tri-axial ellipsoid. The recent derivation of the viscosity increment 
u for tri-axial  ellipsoid^^,^ represents a significant step forward, although 
a given value of u does not uniquely fix a value for the two independent axial 
ratios. We now show by combining this result with information from 
sedimentation velocity and electric birefringence decay that it is possible, 
with the currently available experimental precision, to uniquely determine 
the axial dimensions of a macromolecule in solution in terms of a general 
tri-axial ellipsoid model. This model is independent of any assumptions 
concerning the swelling of the macromolecule due to solvent association 
other than that it is the same in the three types of experiment. 
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THEORY 

Viscosity Increment u for Tri-axial Ellipsoids 

The fact that a dissolved macromolecular solute increases the viscosity 
of a fluid has been well described, and Simha8 and Saito9 related this in- 
crease to axial ratio for ellipsoids of revolution in terms of the viscosity 
increment u. An explicit expression in terms of axial ratio (a lb ,  blc) for 
the viscosity increment of a dilute dispersion of general ellipsoids (a 2 b 
2 c) has recently been given6r7 assuming that the particles rotate on average 
with the local undisturbed angular velocity of the fluid: 

Po + Yo 

+ 

where [q] is the intrinsic viscosity (mL/g), us the swollen specific volume 
(mL/g), M,  the molecular weight, V,  the volume of a macromolecule (mL), 
NA Avogadro’s number, and the a;, etc., are elliptic integrals defined by 
Jeffrey.lo This assumption had only been rigorously proved for ellipsoids 
of revolution, but it can be shown to be extremely accurate for globular 
particles (alb: 1.0 - 3.0, b/c: 1.0 - 3.0) and for tapes (a  >> b >> c). For 
certain particles of intermediate asymmetries, the value of a small extra 
term (Ref. 11; and J. M. Rallison and H. Brenner, personal communica- 
tions), representing the departure of particles from rotating with the fluid 
is generally no more than 1% of the RHS of Eq. (1): 

c 2 + a 2  ]] (1’) [a2:: ;:YO + b2po + c2yo + 

b2 - c2  + + 
b2 + c2  

c2yo + a2a0 

The elliptic integrals in Eqs. (1) and (1’) can be solved numerically using 
standard computational routines,12 and hence u can be given for any value 
of (alb,  blc).  Although a given value of (a lb ,  blc)  uniquely fixes a value 
of u, the converse is not true, as is clear from inspecting a table of values of 
u as a function of (alb, b l ~ ) ~ , ~ ;  rather, a given value of u has a line solution 
of possible values of ( a h ,  blc). In order to determine a unique solution 
for ( a h ,  blc) and hence the axial dimensions of a macromolecule in solution, 
other hydrodynamic information must be used; we must therefore consider 
the translational and rotational frictional properties. Scattering of light 
or x-rays can also be used to give useful information on, for example, mo- 
lecular weight, but any interpretation of the data in terms of shape suffers 
from the serious drawback that the macromolecule is assumed to have 
uniform electron density. 
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Translational Frictional Ratio: The B and R Functions 

Although Perrin13J4 had, as long ago as 1936, provided an explicit ex- 
pression for the translational frictional ratio ( f l fo  or P )  for a tri-axial el- 
lipsoid: 

(2) 

(where f is the frictional coefficient of the macromolecule, f o  the corre- 
sponding coefficient for a hydrated sphere of the same volume and mo- 
lecular weight, and q0,po the viscosity and density, respectively, of the 
solvent), the elliptic integral in Eq. (2 )  could only be solved for the special 
case of ellipsoids of revolution. This restriction is, however, no longer 
necessary with the availability of high-speed computers and can be solved 
using standard numerical routines.12 As with u, a given value of P has a 
line solution of possible values of (ah ,  blc). However, in principle at least, 
by combining graphically both line solutions, a unique solution can be found 
from their intersection. [This is analogous to the Oncley15 treatment for 
determining solvation and axial ratio for ellipsoids of revolution. There 
is no possibility of an analytic simultaneous solution to the problem cor- 
responding to the Scheraga and Mandelkern14 treatment, since expressions 
for u and P in terms of individual axial ratios (alb or blc) are not separable 
from Eqs. (1) or (21.1 

In Fig. 1 we have assumed a particle of axial ratios ( a h ,  blc) = (1.5,1.5), 
computed the corresponding values of the parameters u and P (accurate 
to four significant figures), and then plotted the line solutions (Ref. 16). 
Unfortunately, Fig. 1 reveals that the intersection between the two line 
solutions is very shallow and allowing for fl% experimental error in each, 
there is no intersection at all in the “globular macromolecule” range of Fig. 
2. There is also the additional problem that in order to determine both 
u and P ,  we need to know the (swollen) volume of the macromolecules in 
solution. 

However, since both the Scheraga and Mandelkern p and Rowe R vol- 
ume-independent shape parameters315J4 are functions only of u and P, they 
too can be computed for tri-axial ellipsoids: 

dX a 2 -~ - 
(abc)l/3 J [(a2 + X)(b2 + X ) ( G  + X)]1/2 

where k, is the sedimentation concentration regression ~oefficient.~ 
As can be seen from Fig. 2, there is no reasonable intersection between 

the four line solutions-the sensitivity of the /3 function to error is such that 
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Fig. 1. Plots of the contours of constant value for the functions I and P in the (ah, blc) 
plane, computed for the values alb = 1.5, b/c = 1.5 for the two axial ratios of a tri-axial ellip- 
soid. 
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Fig. 2. Plots of the contours of constant value for the functions u, P, /3, and R a t  f l %  levels 
to simulate error in measured values. Other details as in Fig. 1. 
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the p-1% line is off the area mapped. An important conclusion to be drawn 
from this is that no combination of measurements of translational pa- 
rameters can suffice to determine the two axial ratios of a tri-axial ellip- 
soid. 

An obvious alternative approach to the problem is to combine the most 
precisely determinable volume-independent translational function (R) with 
one or more rotational frictional or rotational relaxation functions. Again, 
no analytical solution will be possible, and we consider the use of graphical 
solutions applied to plausible data with simulated error. 

Rotational Relaxation Line Solutions 

Solutions for the three rotational frictional ratios (J(0 (i = a, b ,  c) and 
the three dielectric dispersion relaxation time ratios are now available5 but 
are impossible to resolve experimentally. The same is true for the five 
fluorescence anisotropy relaxation time ratios.17 It therefore follows that 
since all these functions are of no apparent use at the moment, the same 
must be true of compound volume-independent functions involving 
them. 

The tri-axial * function is also now available but is extremely insensitive 
to axial ratio. The same is unfortunately true for the tri-axial A function 
in the globular particle range.5 For volume-independent functions in- 
volving electric birefringence decay parameters, the situation is more en- 
couraging. 

Electric Birefringence Decay: The 6 ,  and 6- Functions 

The decay of electric birefringence for a homogeneous dispersion of 
asymmetric macromolecules consists of two exponential terms? 

where An is the birefringence, N the number density of particles in sus- 
pension, and n l  the refractive index of the suspending medium. A+ and 
A -  are complicated functions depending on the initial orientation of the 
particles and their dielectric and diffusion properties. We may rewrite 
NAJ2nl as the “pre-exponential factors” A;, and Eq. ( 3 )  becomes 

An = A;e-GB+t + ALe-68-t 

8+ and 8- are related to the rotational diffusion coefficients 8; (and hence 
the rotational frictional coefficients, since (i = k T / @ )  by18 
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The dimensions of this equation are of energy/(volume X viscosity); we 
therefore “reduce” it to a function of shape alone? 

1 1 1 
f [(+ + $ + +) - (- a b  + + -)y] {; c 

where 

c2 + a2 u 2 +  b2 ’ ‘ = a2ao + b2Po 
9 c; = 

b2 + c2  

b2Po + C2Y0 c2yo + u2ao c: = 

and the elliptic integrals LYO, etc., are defined by Jeffrey.10 
Related volume-independent functions can be obtained by combining 

6Fd either with the viscosity increment or the translational frictional 
ratio: 

The tii and y+ functions are new and 6, plotted, with the R function, in 
Fig. 3 (the y+ vs R plot is very similar to the 6* vs R plot of Fig. 3 ) .  It is 

*!b 

Fig. 3 .  Plots of the contours of constant value for the functions R ,  6,. and 6- a t  fl% levels. 
Other det,ails as in Fig. 1. 



MODELING BIOLOGICAL MACROMOLECULES 1819 

seen that both give very reasonable intersections with R and are sensitve 
to axial ratio. The functions are preferred over the yi, since they require 
fewer experimental measurements and do not involve squared or cubed 
terms, and hence, in principle, can be measured more accurately. There 
remains, however, the problem of measuring 6*, i.e., resolving the expo- 
nential decay into its two component decay constants. To date, reliable 
resolution has not been possible except for very accurate synthetic data-far 
beyond current experimental accuracy. We now investigate aspects of this 
problem and show that with a new “constrained” least-squares algorithm 
using intersection with the R curve as the constraint, this is now possible 
with currently available experimental precision. 

NUMERICAL METHODS 

Two detailed reviews of methods for resolving multiexponential decays 
have recently been given by Jost and O’Konski16 and O’Connor, Ware, and 
Andre.19 It is clearly evident from their work that the nonlinear least- 
squares iterative procedure is the best available method for resolving a 
two-term exponential birefringence decay. In this method, the weighted 
sum of the squares of the residuals, x2 is calculated between a set of ex- 
perimental data points and the function to be fitted. If xj represents the 
value of the j t h  experimental point and ,$; (X,) the corresponding computer 
point for a given estimate for the X (the independent variables), then we 
define our “goodness of fit” parameter x2 by 

where a, is the standard error on the j t h  experimental point. The best 
values of the X ,  are such that dx2/dX, = 0, for all the X,. For the par- 
ticular case of electric birefringence, aj is approximately constant for all 
the xj ,16 and the minimization condition becomes 

-- - 0  
dF 
ax, 

where 
n 

F = C {x; - ,$;I2 
;=l 

In the case of a two-term birefringence decay, the minimization condition 
is said to be “nonlinear” in that the data are to be fitted to a function that 
is the sum of terms each consisting of the product of an adjustable pa- 
rameter (i.e., a pre-exponential factor) with the function of another ad- 
justable parameter (i.e., a decay constant or relaxation time). In order to 
evaluate aFIdX, for a current estimate of the parameters X,, the solution 
either has to be linearized using a Taylor expansion as outlined by Jost and 
O’Konski,16 or alternatively a quadratic or quasi-Newtonian procedure can 
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be employed: Gill and Murray’s20 quadratic algorithm is particularly at- 
tractive in that upper and lower limits for adjustable parameters can be 
specified and included as external constraints. 

Computer Simulation 

The requirement on the accuracy of the experimental data was tested 
by computer simulation: Three hypothetical ellipsoidal proteins of known 
(tri-axial) dimensions and hence axial ratio ( a h ,  blc) were assumed to have 
a partial specific volume U of 0.73 and a swelling ratio (us lU) ,  (where us is 
the swollen specific volume) of 1.3 (typical for globular proteins). From 
these values the molecular weight M,., viscosity increment v, R function, 

functions, intrinsic viscosity [q], and hence decay constants O+ could 
be predicted for each protein (Table I). Pre-exponential factors A; and 
A: of 0.07 and 0.05 rad were also assumed [taken from an initial birefrin- 
gence (=A; + A:) of 0.12 rad], and hence the unperturbed decay curve for 
each simulated protein could be given. 

TABLE I 
Assumed and Derived Characteristics of Three Hypothetical Globular Proteins 

Protein 
Parameter 1 2 3 

alb,  blc 
us (mL/g) 

Swollen molecular volume, 
V,  = 4/3?rabc (cm3) 

Anhydrous molecular volume, 
V [= (clijs)VJ (cm3) 

Molecular weight, 
M, [= (NA/G)V]  

Y 

I v l ( =  N A V ~ U I M ~ )  (mL/g) 
R 

6+, 6-  
Decay constants,= 

p e d  Bred + ,  - 

Assumed Values 
45,30,20 42.5, 25, 20 42.5,34,20 

0.730 0.730 0.730 
1.3 1.3 1.3 

Derived Values 
1.50,1.50 

0.949 
1.131 X 

0.870 X 

71,744 

2.892 
2.75 
1.479 

0.163,0.116 
2.821,2.016 

1.70, 1.25 
0.949 

0.890 X 

0.685 X 

56,510 

2.870 
2.72 
1.482 

0.171,0.115 
2.943,1.982 

1.25,1.70 
0.949 

1.211 x 10-19 

0.931 X 10-19 

76,853 

2.840 
2.695 
1.496 

0.155,0.125 
2.645,2.125 

NAkT o* =- 6 1  (s-1) 5.815 X lo6, 7.766 X lo6, 5.187 X lo6, 
6vo[vlMT 4.156 X lo6 5.229 X lofi 4.167 X lo6 

Relaxation times, 
71 = 1/68* (ns) 28.660, 21.461, 32.130, 

40.010 31.873 39.992 

a T = 293 K, 70 = 0.01 g cm-’ s-] 
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One then places simulated experimental error on each of 100 data points 
for each decay curve using a computer normal (“Gaussian”) pseudo-random 
number generator,12 and first of all assuming no errors in the molecular 
weight or intrinsic viscosity, investigate how much error in the decay data 
points is tolerable before the algorithm becomes unstable, i.e., fails to give 
back the correct decay constants and hence axial ratios within reasonable 
limits. If successful, the algorithm would then be tested for the effect of 
errors in the intrinsic viscosity and molecular weight (as well as the error 
in the decay curve) and for various initially assumed values of A; and A’- 
(which in the analyses are, of course, regarded, with the 6*, as unknown 
variables). 

Nonlinear Least-Squares Method 

The quasi-Newtonian quadratic method for minimizing any function 
(i.e., in this case the sum of the squares of the residuals, F )  given by Gill and 
Murrayz0 and incorporated in the UK,NAG mk VI12 subroutine E04JAF 
was used. In this algorithm the user, besides supplying the subroutine for 
calculating the value of F at  any point X,, has also to supply fixed upper 
and lower bounds on the independent variables X I  . . . X ,  . . . X N .  This 
routine was incorporated in a FORTRAN IV program that generated its own 
hypothetical decay curve with normal pseudo-random error generated on 
each data point (using NAG routine G05ADF), the amount specifiable by 
the user. The program attempted to retrieve the decay constants, hence 
the functions (from [a ] ,  M,) and hence, from a plot (Fig. 3), the axial 
ratios (alb, blc). Owing to the problem of the danger of the routine falling 
into subsidiary minima,16 it was necessary to repeat the method for a large 
number (30) of initial guesses. 

Unfortunately, even synthetic birefringence data as accurate as 0.001 O 

standard error (SE) on each data point [about two orders of magnitude 
greater than the current experimental precision (B. Jennings and V. Morris, 
personal communication)] failed to give back the correct (alb,  blc)  within 
reasonable limits, and for data of machine accuracy (14 significant figures), 
the exact value was not retrieved, as Fig. 4 illustrates. 

A New R-Constrained Nonlinear Least-Squares Algorithm 

A significant improvement in the least-squares algorithm can be gained 
if information from the R function line solution, which can be found rela- 
tively accurately and e a ~ i l y , ~  is included as a constraint. The problem is 
effectively reduced from one of four independent variables (@+, 8-, A;,  
A:) to one of three (alb, A; ,  A:). The solution is constrained to lie on the 
R curve; thus, a given estimate for alb will necessarily give a “constrained” 
value for blc; the computer program can then calculate the values for 6+ 
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Fig. 4. Plots of the contours of constant value for the functions R ,  6+, and 6- (as in Fig. 3) 
assuming no error greater than computer rounding error in supplied data. The nonlinear 
least-squares method (see text) was used. 

and 6-  corresponding to this estimate and, hence, the decay constants e+ 
[using also the values for [T ]  and M,-Eq. (4)], the corresponding decay 
curve, and finally the sum of the squares of the residuals (SSR) between 
the computer points and the "experimental" curve. By iterating along the 
R curve for alb and the two pre-exponential factors A;, the best estimate 
for (alb,  blc) can be found from the minimum value of the SSR. The 
constraint of the R curve was included in the algorithm by use of a cubic 
spline routine: the coordinates of knots in the curve are specified in the 
program (or alternatively, the whole curve digitized) and the routine in- 
terpolates between these points using a cubic polynomial spline fit. Nu- 
merical integration of the elliptic integrals for determining values of was 
accomplished using the NAG routine DQI1GAF.I2 

It was found in pilot runs of the complete program that the danger of the 
algorithm falling into subsidiary minimal6 was no longer significant. The 
number of initial guesses was thus reduced from 30 to 3 to save on computer 
time: the final estimates were generally the same for all three initial 
guesses. The values of the (alb, blc) retrieved did, however, depend on 
the cutoff time specified for the decay curve. If there were no error in the 
decay data points, then very long cutoff times would be desirable, since this 
region is dominated by the longer relaxation time (or shorter decay con- 
stant, e-). However, the effect of a given absolute error is more pro- 
nounced the lower the birefringence signal. 

The optimum cutoff time, and hence the best value for (alb, blc)  was 
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TABLE I1 
Determination of the Optimum Cutoff Time for Protein 1: True (alb,  blc) = (1.5, 1.5Ia 

alb at  Cutoff Time (ns) 
80 100 110 115 120 140 

Stream 1 
Stream 2 
Stream 3 
Stream 4 
Stream 5 
Stream 6 
Stream 7 
Stream 8 

1.580 
1.946 
1.591 
1.644 
1.623 
1.186 
1.573 
1.716 

1.534 
1.785 
1.512 
1.487 
1.480 
1.275 
1.645 
1.623 

1.513 
1.692 
1.483 
1.425 
1.426 
1.303 
1.678 
1.590 

1.503 
1.654 
1.468 
1.396 
1.401 
1.315 
1.694 
1.575 

1.493 
1.619 
1.452 
1.367 
1.377 
1.326 
1.710 
1.562 

1.454 
1.497 
1.392 
1.249 
1.287 
1.364 
1.772 
1.514 

Mean 1.607 1.543 1.514 1.509 1.488 1.441 
UDb 0.210 0.149 0.134 0.132 0.134 0.163 
U E C  0.0741 0.0527 0.0473 0.0468 0.0475 0.0578 

Optimum cutoff time = 115 ns 
Best. estimate for alb = 1.501 (f0.047) 
Corresponding estimate for blc = 1.498 

a No assumed error in R. 
UD, standard deviation. 
UE,  standard error. 

found by repeating for eight streams of normal random data, specified by 
the NAG routine12 G05BAF(O.N), where N represents the stream number 
of the random data: the optimum cutoff time for each decay curve was then 
determined by finding the best standard deviation (go) or standard error 
( C T E )  of the alb's from the eight streams for increments of 5 ns in the cutoff 
times. The corresponding best mean value for alb (and hence blc) ,  to- 
gether with the corresponding standard error for the eight streams of data, 
could then be found (Table 11). This procedure was then repeated allowing 
for f l% experimental error in the R curves. If the points on the three 
curves corresponding to ( (a lb ,  c l d ) )  + CE (where ( ) denotes the mean 
value) are joined and then similarly those of ( ( a l b ,  b l c ) )  - CTE, regions of 
allowed values for (alb,  blc)  permitted by the data would then be found. 
Figures 5-8 illustrate the results for birefringence decay data of 0.1" SE 
on each data point (about the current experimental precision): the mean 
values are seen to agree very closely with the actual values (Table 111). 

TABLE 111 
Mean Values for the Retrieved Axial Ratios ComDared with Real Values 

Retrieved Real 
Protein (alb,  blc) (a lb ,  b l c )  

1 (1.501, 1.498) (1.50, 1.50) 
2 (1.652, 1.305) (1.70, 1.25) 
3 (1.284, 1.695) (1.25, 1.70) 
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Fig. 5. Contour plots for a hypothetical Protein 1 (see text) showing the area (dotted) within 
which estimates for the axial ratios are found to lie by use of the R-constrained least-squares 
algorithm (see text). Simulated experimental error of fl" on each data point in the electric 
birefringence decay curve was assumed. Error in R of fl% was assumed. [True (a lb ,  blc)  
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Fig. 6. Contour plots for a hypothetical Protein 2 (as in Fig. 5). /True (alb, b/c) = (1.7, 

1.25).] 
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Fig. 7. Contour plots for a hypothetical Protein 3 (as in Fig. 5). [True ( a l b ,  b lc )  = (1.25, 
1.7).] 

The algorithm was then tested for the effect of experimental errors in 
the intrinsic viscosity (fl%) and molecular weight (f1.4%) [Eq. (4)]. These 
were found to be not significant (Table IV). In any case, molecular weights 
of many macromolecules can now be found precisely from the results of 

TABLE IV 
Effect of Experimental Errors in the Intrinsic Viscosity and Molecular Weight" 

Stream No. alb 
of Random Data -1.7% No Error +1.7% 

1 1.493 1.503 1.520 
2 1.638 1.654 1.679 
3 1.455 1.468 1.487 
4 1.374 1.396 1.424 
5 1.383 1.401 1.425 
6 1.305 1.315 1.333 
7 1.695 1.694 1.704 
8 1.566 1.575 1.593 

Mean alb 1.489 1.509 1.521 
CDb 0.136 0.132 0.130 
U E C  0.0482 0.0468 0.0467 

a Assumed error in [s] = f l % ;  in M r ,  f1.49'0. Total error in product [q] M, = +=1.7% (cal- 
culated from the formula of Ref. 21). Results are for Protein l: cutoff time, 115 ns, f0.1" 
SE on each of the 100 data points. 

ug, standard deviation. 
UE,  standard error. 
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sequence analyses. Finally, the algorithm was tested for the effect of taking 
different initially assumed values for the pre-exponential factors A; and 
A: (Table V). Again, these were found to have no significant effect on the 
results: even for pre-exponential factors differing by two orders of mag- 
nitude, although the retrieved A\ was poor, the retrieved a/b  was in close 
agreement with the other values. 

Once the value for the axial ratio (a/b,  ble) has been found for a particular 
protein, it can then be combined with the swollen volume of the protein to 
determine the axial dimensions. "Model-dependent'' estimates for the 
swollen volumes, V,, of each protein have been found by back-substitution 
of the mean value of (a lb ,  blc) determined above into Eq. (1) for the vis- 
cosity increment. The semi-axial dimensions a ,  b ,  e for the three proteins 
are then found to be (A): 

Protein 1: 45.00, 29.98, 20.01 (45.0,30.0, 20.0) 
Protein 2: 42.28,25.59, 19.61 (42.5,25.0,20.0) 
Protein 3: 43.11,33.58, 19.81 (42.5,34.0, 20.0) 

These are in excellent agreement with the actual values. 

DISCUSSION 

In applying this algorithm to real macromolecular solutions, several 
important factors must be taken into consideration. 

1. Two or more decay constants can also arise if the system is polydis- 
perse. It is therefore essential that the solution be rendered homogeneous 
by, for example, gel filtration or other appropriate techniques. 

2. It has now been well established2' that the single-exponential decay 
constant previously resolvable from monodisperse decays shows a con- 
centration dependence. One must therefore naturally assume this to be 
true for the two decay constants now resolvable, and hence they should be 

TABLE V 
Effect of Different Initial Values for the Pre-exponential Factors A;" 

Assumed Retrieved 
A', A' alb A ,  A' 

0.06 0.06 1.683 0.057 0.064 
0.07 0.05 1.674 0.065 0.055 
0.09 0.03 1.660 0.083 0.038 
0.11 0.01 1.664 0.099 0.021 
0.119 0.001 1.644 0.109 0.012 

a Protein 1, cutoff time = 100 ns, 0.1 SE, on each of the 100 data points. The data for this 
table were obtained after the UK NAG Mk VI routines had been updated to Mk VII; the new 
random-number routines corresponding to G05ADF and G05BAF in Mk VI are G05CAF and 
G05CBF. 
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extrapolated to infinite dilution. On the other hand, because of the con- 
straint in our algorithm that they must correspond to &* line solutions that 
intersect with the R curve, the values for the decay constants are such that 
they are not the “true” decay constants for each particular concentration 
but closer to their infinite-dilution values. Since the extrapolation pro- 
cedure must be empirical, the best estimates for alb at  particular solute 
concentrations rather than these “damped” decay constants may be ex- 
trapolated to infinite dilution. Once the extrapolated value for alb has 
been found, the corresponding value for blc can thus be found from the R 
curve. 

3. The requirement on the precision of the electric birefringence appa- 
ratus is not only in producing transient decays to a precision of 0.1” SE on 
each data point, but also the availability of response times (i.e., the finite 
time it takes for the orienting pulse to be switched off) of about an order 
of magnitude less than that of the faster relaxation time. Adequate re- 
sponse times (Ref. 23; and B. Jennings and v. Morris, private communi- 
cation), are now available, however, with apparatus that use a laser light 
source, cable discharge generator, and a memory oscilloscope, giving a re- 
sponse time of -5 ns. 

4. In the above analysis it has been shown that greater accuracies in 
obtaining the axial ratios can be had if the optimum cutoff time for the 
decay is found; this corresponds in practice to recording several decays of 
the same preparation. Different samples of the same preparation should 
be used because of the risk of denaturing the protein by pulsing through 
high electric fields. 

5. It has also been assumed that the R function can be measured to a 
precision of - f 1%. Sedimentation coefficient values in a s, versus con- 
centration plot can be determined to within - f 1%. The intrinsic viscosity 
[q] can also be measured to within - f 1%, the limiting factor here being 
the accuracy to which flow times can be measured. The error in R will thus 
be of the order of 1% after taking into consideration that any systematic 
errors in measuring absolute solute concentrations will cancel in the ratio 

6. Finally, it should be pointed out that because of polarization effects 
on the electrodes and also the danger of high electric fields mentioned 
above, solutions of low ionic strength (<0.01M) generally have to be used. 
[This could account for the nonideality observed in Pt. (a).] On the other 
hand, an interesting new method is being developed in which an ultrasohic 
field rather than an electric field is used for initial orientation of the 
macromolecules before the decay is observed.24 This “acoustic birefrin- 
gence” method does not suffer from the problems of electrode polarization 
and denaturation associated with higher ionic strengths, allowing the 
possibility for the investigation of less soluble materials. 

The experimental application of our newly developed algorithm, in which 
data from viscosity, sedimentation, and electric birefringence are combined 
to determine unique values for (alb,  blc) ,  the two axial ratios of the tri-axial 

k ,  4771 .:3 
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ellipsoid, remains to be accomplished. Detailed simulation shows that our 
algorithm is stable to  known experimental errors. Problems as yet un- 
suspected may arise, but equally, experimental technique may well advance, 
especially in the area of electric birefringence.25 

Squire and Himme126 have recently reemphasized the role that those 
methods often loosely called “hydrodynamic” can play in investigating the 
conformation of macromolecules in solution, including the presence of 
associated solvent. Indeed, Squire and Himmel’s data suggest that the 
ellipsoid of revolution remains a very adequate model for many proteins, 
and from this we would predict that our algorithm would yield a value of 
either a l b  or blc close to unity in such cases. Equally, there exist well- 
known proteins that cannot be modeled by any sort of ellipsoid: sometimes 
for very obvious reasons of total shape discrepancy (e.g., myosin) and 
sometimes for reasons that are as yet uncertain but that may become ap- 
parent when the three-dimensional structure in solution is known or that 
may arise from very particular types of solute-solvent interaction (e.g., 
serum albumin“’;). Nonetheless, the number of macromolecular solutes 
capable of being modeled by an ellipsoid, a t  least to a level where experi- 
mental precision rather than the goodness of the model is limiting, is 
probably large. As probes of conformation and conformational changes 
in such solutes “hydrodynamic” methods are nondestructive, use well- 
defined methodology, and yield results that apply to the solute particles 
in solution and that can illuminate the increasingly interesting area of so- 
lute-solvent interaction. There is, however, little point in continuing the 
all-too-prevalent tradition of reporting “axial ratios” and “hydration val- 
ues” where it is often painfully obvious that the (usually unspecified) real 
imprecision in the estimate probably exceeds the actual numerical value 
of the estimate itself. Our present study shows many approaches that 
might appear mathematically plausible to be hopelessly unstable from the 
numerical standpoint. Numerically stable procedures can, however, be 
defined for ellipsoids of revolution and now for tri-axial ellipsoids. Ex- 
perimental results suggest that the simpler model can yield valid and in- 
teresting results (Squire and Himme1l6; and A. J. Rowe, data to be pub- 
lished on the use of the R function). Further experimental data will be 
required to test the real usefulness of our presently defined approach. 
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