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Abstract 

There is a renewed interest in obtaining a systemic understanding of metabolism, gene 
expression and signal transduction processes, driven by the recent research focus on 
Systems Biology. From a biotechnological point of view, such a systemic understand-
ing of how a biological system is designed to work can facilitate the rational manipula-
tion of specific pathways in different cell types to achieve specific goals. Due to the 
intrinsic complexity of biological systems, mathematical models are a central tool for 
understanding and predicting the integrative behavior of those systems. Particularly, 
models are essential for a rational development of biotechnological applications and 
in understanding system’s design from an evolutionary point of view. Mathematical 
models can be obtained using many different strategies. In each case, their utility will 
depend upon the properties of the mathematical representation and on the possibility 
of obtaining meaningful parameters from available data. In practice, there are several 
issues at stake when one has to decide which mathematical model is more appropri-
ate for the study of a given problem. First, one needs a model that can represent the 
aspects of the system one wishes to study. Second, one must choose a mathematical 
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representation that allows an accurate analysis of the system with respect to differ-
ent aspects of interest (for example, robustness of the system, dynamical behavior, 
optimization of the system with respect to some production goal, parameter value 
determination, etc). Third, before choosing between alternative and equally appropri-
ate mathematical representations for the system, one should compare representations 
with respect to easiness of automation for model set-up, simulation, and analysis of 
results. Fourth, one should also consider how to facilitate model transference and 
re-usability by other researchers and for distinct purposes. Finally, one factor that is 
important for all four aspects is the regularity in the mathematical structure of the 
equations because it facilitates computational manipulation. This regularity is a mark 
of kinetic representations based on approximation theory. The use of approximation 
theory to derive mathematical representations with regular structure for modeling 
purposes has a long tradition in science. In most applied fields, such as engineering 
and physics, those approximations are often required to obtain practical solutions to 
complex problems. In this paper we review some of the more popular mathematical 
representations that have been derived using approximation theory and are used for 
modeling in molecular systems biology. We will focus on formalisms that are theoreti-
cally supported by the Taylor Theorem. These include the Power-law formalism, the 
recently proposed (log)linear and Lin-log formalisms as well as some closely related 
alternatives. We will analyze the similarities and differences between these formalisms, 
discuss the advantages and limitations of each representation, and provide a tentative 
“road map” for their potential utilization for different problems.     

Introduction: goals of mathematical modeling

Mathematical modeling is an essential tool for Systems Biology. We will briefly discuss 
some of the more frequent types of biological problems for which modeling is used 
and the challenges that those problem pose to the modeling process. 

For many researchers, a modeling exercise has the fundamental goal of fitting ex-
perimental data to derive parameter values that characterize the processes of interest. 
When dealing with such a problem, the mathematical model provides a tool to evaluate 
if the conceptual description of the system under study is adequate to fit the data that 
are observed and measured for that system. Such an approach has two types of potential 
drawbacks. On one hand, a model based on the correct reaction scheme for the system 
may fail to fit experimental data. There may be two general reasons for such a failure. 
Either the absence of some unknown regulatory signal in a network structure or the 
use of inappropriate kinetic representations to write the mathematical model could 
preclude a conceptual model from explaining the systemic behavior of the network. 
On the other hand, models that use complex mathematical representations have the 
flexibility to fit a wider range of dynamic behaviors than models created using simpler 
mathematical representations. A consequence of this is that, depending on the mathemati-
cal representation used for the model, conceptual models that are incorrect can in some 
cases lead to a “false positive” result. This “false positive” is a model that adequately 
fits experimental measurements, but that incorrectly represents the mechanism of the 
processes that underlie the results. A way to decrease the probability of accepting an 
inappropriate conceptual model is by using well suited alternative mathematical models 
to predict the behavior of the system under untested conditions. The model’s predic-
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tions can then be compared to the corresponding wet lab experiments, thus validating 
which of the alternative conceptual models proposed is better suited for representing the 
system of interest. It is important to carefully select and design the experiments that can 
provide the most adequate information for discriminating between alternative models. 
Nevertheless, one should keep in mind that the ability of a model to fit experimental 
data is not an ultimate proof that the process that underlies the data generation is clearly 
understood (Voit, 2002).

Researchers may also be interested in reconstructing and identifying the topology 
of reactions and regulation in biological pathways and circuits. This is an important 
scientific challenge that requires an integrative use of many different types of tools and 
information, mined from genomic, proteomic, bibliomic, fluxomic and metabolomic 
data. Mathematical models can play a central role in this task as they can be used to 
characterize the dynamic behavior of alternative network structures and compare that 
behavior to what is observed experimentally (Alves et al., 2004a,b). Mathematical 
representations used for this type of model building should be easy to manipulate in a 
systematic and automated way. This is so because alternative processes and metabo-
lites need to be included and excluded in combinatorial ways to generate alternative 
network topologies. 

Molecular Biologists have come to realize the importance of identifying and analyz-
ing design principles in gene circuits, metabolic pathways, etc. Mathematical models 
are fundamental for this research. This type of research has a long tradition in Systems 
Biology (Savageau, 1972; 1976). The recent field of Synthetic Biology (see Arkin, 
2001; Forster and Church, 2007; Greber and Fussenegger, 2007; Luisi, 2007; Meyer 
et al., 2007; Pleiss, 2006; Saito and Inoue, 2007; Sole et al., 2007 for reviews) heavily 
depends on the ability to characterize the underlying rules that govern the systemic 
behavior of a network. These rules are then used to create systems with specific per-
formances.  As examples of such applications we have the oscillatory clock designed 
by Ninfa, Savageau and co-workers in E. coli (Atkinson et al., 2003), or the bistable 
switch designed by Kim et al. (2006), among others (Antunes et al., 2006; Atsumi and 
Little; 2006, Fung et al., 2005; Greber and Fussenegger, 2007; Haseltine and Arnold, 
2007; Kim et al., 2006; Rosenfeld et al., 2007; Sprinzak and Elowitz, 2005; Weber 
et al., 2007; Yokobayashi et al., 2002). Identifying and analyzing design principles 
is, perhaps, the application discussed in this review for which mathematical models 
are more central as a tool (Voit, 2006). For example, one can analyze the response 
of yeast gene expression patterns to a given stress by experimental means, such as 
microarray experiments (Alvarez-Vasquez et al., 2005; Sims et al., 2004; Vilaprinyo 
et al., 2006; Voit, 2003; Voit and Radivoyevitch, 2000). In the response to heat shock, 
an increase in the concentration of sphyngolipids, trehalose, and chaperones plays an 
important protective role. Thus, it seems logical that genes involved in the synthesis 
of these cellular components are over-expressed. However, the question of why a 
specific increase in gene expression has evolved instead of some other change can 
hardly be addressed with a wet lab experiment. By using mathematical models one can 
show that alternative changes in gene expression would hinder specific physiological 
requirements for the survival of the cell. This type of analysis can ultimately lead to 
understanding the qualitative and quantitative organization of cellular circuits.  

In many biotechnological applications, mathematical models are used for predicting 
the best way to modify or manipulate a biological circuit in order to optimize specific 
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properties of the system (for example see Marin-Sanguino et al., 2007; Sevilla et al., 
2005; Vera et al., 2007). An important goal of metabolic engineering is precisely that 
of manipulating cell metabolism in order to obtain specific products by capitalizing on 
modified cell physiology. While such a task has been accomplished in the past using 
a trial and error strategy, mathematical models can speed-up the process and provide 
optimal solutions that are hard to find through a less systematic approach (Bailey, 
1991; 2001; Bailey et al., 1990; 2002; Prati et al., 2002). Again, the mathematical 
representation chosen for this type of task must be adequate for optimization purposes. 
If that representation is too complicated we could face a problem that is similar to the 
“false positive” cases described above for parameter fitting. Nevertheless, one must 
also be aware that models built using oversimplified representations (for example 
linear representations) can fail to capture essential properties of the system that are 
important, leading to sub-optimal solutions for the optimization problem at hand.

 Mathematical models can also be used to understand the relationships between 
genotype and phenotype (health and disease states, effect of knocking out specific 
genes, etc.) by creating more or less large scale models of cellular processes. These 
models can integrate different levels of the cellular response and create a network that 
accounts for the dynamic behavior of genes, proteins and metabolites. In this type of 
application, one is often faced with highly complex conceptual schemes. Mathemati-
cal models that include the entire genome of an organism are becoming common. 
Most of these models are based on stoichiometric descriptions of the network that 
allow the use of graph theory to predict certain qualitative phenotypes that may result 
from modifying genes in the network. For example, these types of model have been 
used to predict essentiality of genes, by performing genome-wide in silico knock-
out experiments (Edwards and Palsson, 2000; Edwards et al., 2002). On the other 
hand, projects like e-cell (Takahashi et al., 2003) aim at producing a more detailed 
mathematical description of the cell so that one can (semi)quantitatively predict the 
cellular behavior.  Such detailed descriptions are difficult to obtain in most cases. For 
example, if one is interested in understanding purine metabolism in humans, one is 
faced with a system that involves different levels of metabolism and for which virtu-
ally no experimental data exists (Curto et al., 1997; 1998). Thus, it is often necessary 
to rely on data obtained for isolated components of the system in order to create a 
mathematical model that can be use to explore healthy and pathological states known 
to be dependent on the system being modeled (Boros et al., 2003; Lee et al., 2004; 
Maher et al., 2003; Orosz et al., 2003; Ramos-Montoya et al., 2006; Rodriguez-Caso 
et al., 2006; Selivanov et al., 2007; Vera  et al., 2007).

The role of approximated kinetic representations in modeling metabolic 
processes

As stated above, mathematical models provide a tool for investigating the integrated 
behavior of complex systems. They have been used to do so even before computers 
were widely available (Chance, 1943). Such mathematical models may grow very 
quickly in number of variables and parameters when one considers all individual 
mechanistic steps and species of a molecular system. This is true even for small path-
ways. The simpler a model is while still being able to predict the behavior of a system, 
the simpler the analysis of that system will be. Approximate kinetic representations 
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may be used to build models that reduce the dimensions of the network, providing 
an appropriate tool for understanding the systemic properties of a network. The use 
of such formalisms is justified because:

1.  In many cases, one cannot find enough information for a detailed description of 
the mechanisms and for the estimation of individual parameter values. This is 
especially true while analyzing problems of design principles or while dealing 
with poorly characterized systems. Thus, instead of arbitrarily choosing a kinetic 
function to describe each process, one can use an approximated mathematical 
representation that is theoretically guaranteed to be a good approximation in 
some range of values. For this, we need mathematical formalisms that can be used 
to extract meaningful systemic information under such restrictive conditions.

2.  The widespread use of rational kinetic functions to reduce the dimensionality 
of a network, such as the Michaelis-Menten enzyme kinetics description, is 
accurate only as long as the theoretical conditions that allow the derivation of 
such functions hold. These functions are usually derived by lumping processes 
in a time-scale dependent manner and/or assuming large differences between 
the concentration of the different species and catalysts involved in the reaction. 
Such conditions are valid for typical in vitro reactions catalyzed by enzymes 
and taking place in a homogenized medium under excess substrate conditions. 
However, these conditions may break down for example in non-homogeneous 
environments such as the cellular medium (Anacker and Kopelman 1987; 
Kopelman 1988; Savageau 1995; Savageau, 1998; Schnell and Turner, 2004). 
Thus, mathematical representations that depend on the mathematical properties 
of functions rather than on the physical properties of the processes may have 
advantages while representing in vivo systems. 

3.  In the process of model simplification, one often lumps different variables and 
processes together (Curto et al., 1997; 1998). This creates an aggregated process, 
often like a black box, with a non-traditional and undefined kinetic description. 
In such a case, the use of approximation theory to derive a description of this 
process also facilitates the modeling process.

4.  Mathematical models based on approximated representations provide a 
systematic way of building a model from scratch that can be easily automated. 
This is especially useful for large systems, when exploring unknown network 
structures, and in generating models automatically.

5.  Optimization problems using nonlinear models are a difficult task. Models 
based on regular approximate representations of the different processes (i.e. 
structured models) can facilitate this task because optimization methods that 
take advantage of the mathematical structure can be developed. The caveat 
here is that the selected mathematical representation must capture the essential 
properties of the problem.

6.  Approximate representations also have the advantage of allowing models to 
account for ill-characterized regulatory interactions. This is usually done by using 
qualitative and semi-quantitative information to estimate ranges of parameter 
values for the relevant interactions.



6      R. Alves et al.

Analysis of systemic behavior

As stated above, mathematical models are defined and used to study different types 
of problems. Independently of the purpose of the study, important considerations 
while creating a model are accuracy of the predictions, the possibility of analytical 
solutions, and the easiness of model implementation and analysis through the use of 
computational tools. It is worth it to briefly review some of the main concepts that 
are important for model analysis:

1.   Steady-state solution: The steady-state is a situation in which the net flux through 
all pools of metabolites in a system is 0. This is a dynamic equilibrium that 
characterizes, at least ideally, the basal working conditions of many pathways 
or the homeostatic, long term, response of an organism. A steady-state solution 
for a model is a vector of metabolite concentrations that correspond to this state 
of zero net flux. This solution can be obtained from the equations of a model, 
either numerically (if one attributes values to the parameters and uses numeric 
algorithms to solve the equations) or analytically (if one solves the equations 
in closed form, obtaining a solution that is independent of parameter values). 
Finding analytical solutions is often impossible because, in general, the model 
of interest is a non-linear system of equations for which such a solution cannot 
be calculated. Analytical solutions are important to understand general systemic 
design principles and properties that are independent of parameter values. If 
such solutions are required, one can use the S-system representation within 
the Power-law formalism. The GMA representation using the (log)linear or 
the Lin-log formalism has the same solution than the corresponding S-system 
Power-law representation (Sorribas et al., 2007). When no analytical solution is 
available, the steady-state values can be calculated using numerical methods.

2.  Steady-state stability: Stability is an important property of a steady-state that 
measures the capacity of the system for returning to a steady-state after a 
perturbation. Mathematical conditions that ensure stability of the steady-state 
are design principles for those metabolic systems where instability of the 
steady-state would be incompatible with biological function (Savageau, 1971a,b, 
1974, 1976). In general, local stability of the steady-state is analyzed through 
linearization of the steady-state equations. Steady-state stability can be studied 
numerically in any model that displays steady-state behaviour.

3.  Steady-state parameter sensitivity (systemic robustness): Parameter sensitivity 
is both a measure of biological adequacy of a network and a tool for model 
validation. Parameter sensitivity measures the effect that an infinitesimal change 
in the value of a parameter has on the steady-state values of the model. High 
parameter sensitivities in a model are often indicative that some parts of the 
system have not been adequately described in the conceptual network. On the 
other hand, low parameter sensitivity (robustness) is expected for most biological 
systems. A consequence of this low sensitivity is that systemic properties do not 
critically depend of small variations in the parameter values. High robustness 
(low sensitivity) is an important design principle (Savageau, 1971b) that  is 
emerging as a central concern in Systems Biology (Kitano, H., 2007). Sensitivity 
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analysis has also been used to improve and update pre-existing models (Curto 
et al., 1997; Ni and Savageau, 1996; Shiraishi and Savageau, 1992a,b,c.

4.  Dynamic systemic behaviour: Numerical simulation is a common procedure for 
exploring the dynamic systemic behaviour of a model. These simulations are 
done by attributing values to the parameters and initial concentrations of the 
model followed by solving the differential equations using numerical algorithms. 
Most of these algorithms solve the equations, independently of the form of those 
equations. Nevertheless, as numerical integration of differential equations is a 
costly procedure in terms of computer time, it is desirable to develop algorithms 
that speed-up the process. Often, by taking advantage of the regular structure 
of approximated formalisms, one can develop numerical algorithms that are 
very efficient in their CPU time usage. Such a method, based on Taylor series 
expansions of the solution, has been developed for the Power-law formalism 
(Irvine and Savageau, 1990). Given that it takes advantage of regularities in the 
calculations of the Taylor series, it is likely that this method could be extended 
and adapted for other Taylor formalisms. Nevertheless, there is the concern that 
practical problems may appear for the Taylor method when the systems moves 
towards low metabolite values in representations derived for the (log)linear 
and Lin-log formalisms. In such situations, (log)linear and Lin-log  models can 
produce negative values for the velocities (Sorribas et al., 2007). Having negative 
values for a given flux is a physical and biological impossibility. In addition, 
such negative values are a problem for any numerical integration based on the 
Taylor method.

An overview of mathematical formalisms based on stoichiometry and on 
approximate representations 

STOICHIOMETRIC MODELS

One of the simplest mathematical representations that can be used to model a network 
is derived from the conceptual graph that represents the reactions of the network. The 
information from the graph can be condensed into the stoichiometric matrix S, in 
which each element Sij correspond to the stoichiometric coefficient of the metabolite i 
in reaction j. Additionally, each reaction j is represented by a flux vj, creating a network 
flux vector v. A dynamical model of a given system can be written as: 

vSX ⋅= , (1)

in which X  is a vector of derivatives dXi /dt.  At steady-state, the system obeys 
the equation

0vS =⋅ 0 , (2)
where v0 in now the vector of steady-state fluxes. Such a simple representation for 
the steady-state of the system is known as a stoichiometric model and it can be easily 
obtained from existing information on the biochemical reactions of the network. This 
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representation allows certain types of analysis that can shed some light on the effect 
that a change in a given process may have on flux distribution. The use of Eq. (2) as 
a description for the flux balance in steady-state is appealing as it overcomes one of 
the major drawbacks of more complicated models, i.e. the lack of detailed information 
on kinetic mechanisms and parameters. 

KINETIC MODELS BASED ON APPROXIMATED REPRESENTATIONS

The choice of a particular mathematical form for the velocities v in Eq. (1) gener-
ates a kinetic model that can be used for simulating the dynamical behaviour of the 
system and for the analysis of the changes in fluxes and concentration of metabolites. 
Such an analysis is unavoidable if one wants to understand systemic response under 
different external conditions. Furthermore, these models play a central role if one 
is interested in investigating network structure and design principles. As a common 
initial choice, one often considers using traditional enzymatic rate-laws to describe the 
dynamic behaviour of each of the individual processes vi present in vector v. However, 
as discussed above, the lack of information about the precise mechanism of each of 
these processes is a serious limitation for obtaining such a detailed representation. 
This limitation becomes more dramatic as the models grow and integrate more and 
more individual processes (Curto et al., 1998; Shiraishi and Savageau, 1992a,b,c; 
Sims et al., 2004; Voit et al., 2006; Voit, 2002). 

 An alternative to traditional enzyme kinetics is the use of approximated kinetic 
representations. Such representations provide all-purpose functional forms that greatly 
facilitate the modelling process. To obtain such a representation, we consider that 
each velocity can be expressed as

  ),,( qXii Ev Ψ=  (3)

where Ψ  is a nonlinear function, Ei is the enzyme catalyzing the reaction, X is a 
vector of metabolites, effectors, etc., and q is a vector of parameters. A number of 
alternative approximated representations of vi can be derived using mathematical 
approximation techniques, such as the Taylor series representation of a function (see 
Table 1). The first non-linear, approximated, representation of vi is the Power-law 
formalism, which was originally presented in 1969 (Savageau, 1969a,b; 1970). The 
formalism is a consequence of approximating a function in logarithmic space using 
a first order Taylor series, followed by a return to Cartesian space. Use of the Power-
law formalism has facilitated the development of a very complete set of analytical 
methods, leading to the framework know as Biochemical Systems Theory (Savageau, 
1976; Voit, 2000). The Power-law representation of vi is given by:
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where, n indicates the number of dependent metabolites (i.e. those metabolites which 
are considered as internal metabolites of the systems and whose concentration and 
dynamics depend on the systemic behaviour), m indicates the number of external 
metabolites (fixed outside of the system), and fij

0 (kinetic-order) is the local sensibility 
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of vi to changes in Xj and is defined as

0

0

0

0

i

j

j

i
ij v

X
X
vf 










∂
∂

=
 (5)

In this definition, the index 0 indicates evaluation at a given operating point, defined 
by a set of values of the metabolites and the corresponding flux values:(X0, v0). Finally, 
the parameter gi (an apparent rate-constant) can be calculated from
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For technical details on the derivation of this formalism see for instance Voit (2000), 
Sorribas et al. (2007), and references therein.

The interpretation of kinetic-orders is of special relevance for some of the questions 
one is usually interested in. According to (5), a kinetic-order fij

0  will be positive if an 
increase in  Xj leads to an increase in vi. This will be the case for the substrates of a 
reaction or for any positive effector of that reaction. A kinetic-order will be negative 
for any species that inhibits the rate vi. If a metabolite j has no effect on vi, then the 
kinetic-order  fij

0   will be zero. Furthermore, it is often possible to derive approximate 
numerical values for the kinetic orders, based on qualitative information about the 
operating point of the approximation. For example, if a reaction is close-to-saturation 
with respect to a metabolite, then this metabolite will have a kinetic-order with a value 
that is close to zero. Values of 1 are appropriate for kinetic orders of metabolites while 
approximating classical enzyme kinetic functions at an operating point well below 
the Km for the relevant metabolite. Values higher than 1 for kinetic orders are only 
possible for cooperative processes, again well below the Km. If an operating point 
is near the Km, the value for the kinetic order is approximately 0.5 for a Michaelis-
Menten process.  

Different authors have derived alternative representations that are also based on a 
Taylor series approximation. The (log)linear formalism was introduced by Bailey and 
Hatzimanikatis (Hatzimanikatis, 1999; Hatzimanikatis and Bailey, 1996; Hatziman-
ikatis et al., 2004; 2005). In this formalism, which is based on a linear representation 
of the target function (3), the functional form of the approximation is:

∑
=











+








+≅

m

j j

j
ij

i

i
iE

i

i

X
X

f
E
Ef

v
v

1 0

0

0

0

0

lnln1
 (7)

In this equation, fiE
0  is the apparent kinetic-order with respect to the enzyme Ei. Its 

value will, in general, be 1, as velocities are linear with respect to the enzyme con-
centration. In a similar way, Heijnen and coworkers derived the Lin-log formalism, 
which has the following form (Heijnen, 2005; Heijnen et al., 2004; Kresnowati et 
al., 2005; Visser et al., 2004; Wu et al., 2004):
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





















+×= ∑

=

m

j j

j
ij

i

i

i

i

X
X

f
E
E

v
v

1 0

0

00

ln1
 (8)

It is noteworthy that when the concentration of enzymes is constant the (log)linear 
and log-lin representations reduce to the same expression:

∑∑
==











+=→










+=

m

j j

j
ijiii

m

j j

j
ij

i

i

X
X

fvvv
X
X

f
v
v

1 0

0
00

1 0

0

0

lnln1

Finally, the Saturable and Cooperativity (SC) representation (Sorribas et al., 2007) 
is also an alternative approximated representation for kinetic functions, based on 
Taylor series. This representation is derived through a procedure that is analogous 
to that used to derive the Power-law formalism. As stated above, the Power-law rep-
resentation is based on using a linear Taylor series approximation in log-log space. 
Making the approximation in logarithmic space increases the range of accuracy of 
the approximation. This has motivated the search for alternative representations that 
could combine different, non-Cartesian, spaces in order to further increase this range 
of accuracy. The formalism is developed from a transformation of coordinates of the 
form (w,z) = (v-1, X-c). In this coordinate system, c is a nonzero constant that is to be 
defined for every Xk. Following arguments analogous to those used by Savageau in 
his derivation of the log-log transformation (Savageau, 1969), the final Saturable and 
Cooperativity (SC) representation is given by

 

( )∏

∏
+

=

+

=

+
= mn

j

n
jij

mn

j

n
ji

i
ij

ij

XK

XV
v

1

1

 (9)
where 

 

( )
( ) ijn

j
ij

ij
ij

ij

ij
ij

X
p

p
K

p
f

n

0

1

1

−
=

−
=

 (10)

In this representation, pij is the saturation fraction of flux vi by substrate or modifier 
Xj. This is given by the ratio between the rate at the operating point, vi0, and the rate 
when Xj Õ ∞ and all the other metabolites are kept at their operating point values. If 
Xj  is an inhibitor, i.e. fij < 0, then the saturation fraction is given by the ration between 
the rate at the operating point and the rate when Xj Õ 0 (see Sorribas et al., 2007 for 
further details and examples).

All the formalisms described above have some common features as they are local 
approximations of a function at a given operating point. In all cases, the resulting 



12      R. Alves et al.

representation uses, to some extent, a Taylor series approximation and, consequently, 
has a limited accuracy range. Interestingly, all approximations share the following 
common parameters: (1) Operating flux,vi0; (2) Operating values for each metabolite, 
effectors and enzymes, Xi0; and (3) Local sensitivity (elasticity), fij

0 , at the operating 
point1. The SC formalism introduces an additional parameter, pij, that accounts for 
the fraction of saturation of the rate at the operating point. 

As a consequence, parameterization of a model in all these formalisms requires the 
same information about how the rate of a process depends on metabolite concentration 
about the operating point, although the final representation varies. In addition, the 
SC formalism requires additional information about the fraction of saturation of the 
fluxes at the operating point, with respect to the different metabolites that modulate 
the flux. 

BUILDING MATHEMATICAL MODELS USING APPROXIMATED REPRESENTATIONS 

Independently of the formalism one is using, the first step in defining a mathematical 
model for a system with n variables and p processes is to write the node equations:

 
nivX

dt
dX

r

p

r
iri

i ,...,1
1

=== ∑
=

µ   
 (11)

where µir is a stoichiometric factor, i.e. µir = 1 if vr is producing a molecule of Xi,  
µir  = -1  if vr is degrading a molecule of  Xi, and so on and so forth. A specific and 
dynamic mathematical model is obtained when each vr is written using a defined 
functional form (either using a traditional enzyme kinetics rational expression or 
any of the approximations discussed above). Using the Power-law formalism, we 
would obtain

 
niXX

dt
dX p

r

mn

j

f
jriri

i rj ,...,1
1 1

0

=







== ∑ ∏

=

+

=

gµ   
 (12)

This particular representation is known as the Generalized Mass Action (GMA) represen-
tation within the Power-law framework and within Biochemical Systems Theory (Voit, 
2000). The equivalent representation using the (log)linear formalism (Hatzimanikatis, 
1999; Hatzimanikatis and Bailey, 1996; Hatzimanikatis et al., 2004; 2005) would be
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r
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X
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1 1 0

0
0

0

0
00 lnlnµ

 (13)

1 Kinetic-orders fij
0 as defined in equation (5) are formally equivalent to elasticities eij

0  used in Metabolic 
Control Analysis and related techniques. We shall maintain the kinetic-order nomenclature to relate the 
different formalisms.
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Eqs. 12 and 13 appear quite different because the operating point concentrations and 
fluxes appear explicitly in Eq. 13. As discussed in the previous section, these fluxes 
and concentrations are implicit in the rate-constant of the Power-law formalism (Eq. 
12). The (log)linear representation (Eq. 13) can be rewritten as 

 
( )∑ ∑ ∑

= = =
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
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j
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000
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0 lnlnlnln1µ )( ( () )

 (14)

Eq. 14 can then be rewritten in a form that makes all the steady-state values implicit 
to the appropriate parameters, i.e.

( ) ( )∑ ∑
= =






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
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
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jrjrrErriri XfEfvX

1 1

00
0 lnlnµ

 (15)

where,
 

( ) ( )∑
=

−−=
m

j
jorjrrEr XfEf

1

0
0

0 lnln1 . It is important to note that the same 

information is required to parameterize Eq. 12 and Eqs. 13-15. Following similar 
procedures, we can derive the mathematical representation for the Lin-log formalism 
and for the SC formalism. In fact one can derive a mathematical representation for 
any other formalism derived from approximating a function through a first order 
Taylor series in a space that has a one-to-one correspondence to Cartesian space.

Equations for the model can be derived using different strategies for flux and pool 
aggregation (Sorribas and Savageau, 1989a,b,c). All formalisms discussed here are 
amenable to these different aggregation strategies.  GMA-like representations em-
phasize individual processes. Alternatively, the basic differential equation for a model 
can be alternatively written as aggregated node equations

 
niVVvvX

dt
dX

iir

p

r
irr

p

r
iri

i ,...,1
11

=−=−== −+

=

−

=

+ ∑∑ µµ

  (16)
In this alternative representation, different processes that contribute for the synthesis 
of a metabolite are aggregated into a single function and the different processes that 
contribute for the degradation of that metabolite are aggregated into another single 
function. In Eq. 16, µir

+  and µir
– account for the positive and negative stoichiometric 

factors, i.e. synthesis and degradation terms2. Then, each aggregated term is represented 
using whatever formalism we decide to use. In the case of the Power-law formalism, 
this strategy leads to the following representation

 
niXXX

dt
dX mn

j

mn

j

h
ji

g
jii

i ijij ,...,1
1 1

=−== ∏ ∏
+

=

+

=

ßa

 (17)

2 It is possible to define different aggregation strategies that would result in a different S-system. 
Independently of the strategy, the original stoichiometric matrix would be divided into two matrices. 
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This particular representation is known as an S-system (Savageau, 1969a,b; Savageau, 
1970; Voit, 2000)3. It has a number of interesting properties, such as the possibility of 
calculating analytical steady-state solutions, which makes it advantageous to choose 
this representation for different modelling applications. A S-system-like description 
can be derived within the (log)linear, the Lin-log, or the SC formalism. However, in 
the later formalism, some of the advantages related to the Power-law representation 
are lost and no analytical steady-state can be calculated (Table 2).

A COMPARATIVE EXAMPLE OF PATHWAYS MODELLING USING DIFFERENT FORMALISMS

Given a conceptual scheme for a system, it is straightforward to obtain a mathemati-
cal model for this scheme using any of the mathematical representations discussed in 
this review. As an illustrative example, we will compare the alternative mathematical 
models for the system in Figure 1. This instructive example represents a branched 
pathway with two regulatory interactions. One is a positive ‘feedforward’ and the 
other is a negative feedback. A stoichiometric description of the dynamic behavior 
of the system shown in Figure 1 is given by

1

2

3

4

5

6

1 1 0 0 0 0
0 1 1 0 1 0
0 0 1 1 0 0
0 0 0 0 1 1

v
v
vdx
vdt
v
v

 
 −      − − = ⋅ = ⋅  −     −    
 

S v

 

(18)

Qualitative aspects of the dynamic behavior of a system can sometimes be predicted 
by analyzing the stoichiometric matrix S from Eq. 18. However, the results of such 
an analysis would be the same for any pathway or circuit with the same set of reac-
tions, independent of any differences in regulation between systems. These regulatory 
differences may translate into distinct dynamic behavior, throwing off the predictions 
from the stoichiometric matrix analysis. Techniques such as Boolean network analy-
sis or Feinberg et al.’s reaction network theory can be used for this type of analysis 
(Craciun and Feinberg, 2005, 2006; Craciun et al., 2006, Demongeot et al., 2000; 
Feinberg, 1985; 1987; 1988; Kaufman and Thomas, 2003; Thomas, 1973; Thomas 
et al., 1995).

3 In the S-system representation, ai rate constants and gij kinetic orders are used for synthesis while  ßi rate 
constants and hij kinetic orders are used for degradation.
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Figure 1. A branched pathway with positive feedforward and negative feedback regulation. This pathway is 
used to illustrate the implications of modeling a system by different mathematical formalisms. Alternative 
mathematical models are created for this system using different formalisms (Table 3). The performance 
of the alternatives is evaluated by comparing the behavior predicted by simulation to that of the original 
system, when that system moves away of the operating point. 

 A way to include regulatory information into a stoichiometric model is by defining 
the vector of rate expressions v and accounting regulatory factors in the individual rate 
expressions. A GMA Power-law model incorporates such regulatory effects through 
the kinetic-orders, which can be represented by the following matrices4:
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These regulatory parameters are incorporated into the rates, generating the following 
model

 

6452

4332

52322321

232115

4625654

3423433

25233125322

31251211

ff

ff

ffff

fff

XXvvX

XXvvX

XXXXvvvX

XXXvvX

gg

gg

ggg

gg

−=−=

−=−=

−−=−−=

−=−=









Steady-state values and dynamic changes can now be computed from these equations 
after setting numerical values for the different parameters. We could choose any of 
the alternative formalisms to obtain the corresponding model. Assuming that enzyme 
concentration is constant, the (log)linear and Lin-log models for Figure 1 are:

4For clarity, in this example we omit the superscript 0 in the kinetic-orders.
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Because steady state fluxes of production and consumption of any metabolite are 
balanced, the previous equations simplify to5
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Table 3 shows the reference mathematical model for the pathway in Figure 1, as 
well as all alternative mathematical models for that system, based on the formalisms 
described in Table 1. The nominal steady-state that was used as an operating point to 
calculate parameter values is that of the reference mathematical model when the value 
for the independent variable X5 is 0.4. As expected, at this point all the formalisms 
predict the same steady-state concentrations and velocities.

The dynamic behavior of the alternative models differs when the concentration 
of X5 moves away from the operating point. As an example, consider two different 
conditions, one below (X5 = 0.1) and one above (X5 = 1) the operating point (X5 = 0.4) 
(Table 4, Figure 2). As a result of these changes in X5, the system will move from the 
basal state to a different steady-state. The dynamic changes in the concentration of the 
corresponding variables when they move from one steady-state to another are predicted 
differently by each model. Remarkable drawbacks for the different representations of 
this particular system are: (1) Lin-log and (log)linear formalisms velocities become 
negative when we decrease X5. (2) When increasing the independent variable from 0.4 

5This final form of the (log)linear and lin-log models is formally equivalent to a linearized Power-law 
model around the steady-state. 
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to 1 Lin-log, (log)linear, and S-System predict a raise in X2 , X3 , v3, and  v4  while in 
the reference model the value for all these variables decreases. (3) As we move away 
from the operating point, the S-System aggregated fluxes differ from the sum of the 
individual velocities that compose it. In that specific example, the SC formalism has 
a wider range of accuracy about the operating point, predicting a dynamic behavior 
that closely follows the behavior of the reference model (Figure 3).

Table 4. Predictions of the new steady-state concentrations and velocities.

Approx.  X5  X1  X2  X3  X4  v1 and  v3 and v5 and   *V-
2 

      v2  v4  v6  
OP  0.4 0.16 1.87 0.69 0.20 4.57 3.26 1.31 4.57
Original  0.1 0.02 0.41 0.22 4 E-4 1.45 1.45 3 E-3 
SC  0.1 0.02 0.41 0.22 7 E-5 1.45 1.45 6 E-4 
PL(GMA)  0.1 0.02 0.29 0.23 8 E-6 1.70 1.70 3 E-4 
PL(SS)  0.1 0.04 1.67 0.64 4 E-3 1.70 3.13 0.05 1.70
LL  0.1 0.04 1.67 0.64 4 E-3 0.04 3.13 -3.08 
Original 1 0.32 1.57 0.62 1.62 8. 3.06 4.94 
SC  1 0.34 1.68 0.64 1.55 8. 3.13 4.87 
PL(GMA)  1 0.34 1.57 0.62 1.15 8.80 3.06 5.73 
PL(SS)  1 0.39 2.01 0.72 2.77 8.80 3.34 12. 8.80
LL  1 0.39 2.01 0.72 2.77 7.56 3.34 4.22 

Abbreviations: OP for Operating point; SC for Saturable and Cooperative; PL for Power 
Law; GMA for Generalized Mass Action; SS for S-System; and LL for Lin-log and (log)
linear formalisms. *For S-System an additional velocity is considered, the aggregated flux of 
the degradation of X2, that at the OP it is the sum of v3 and v4. 

In a similar exercise, Heinjen suggested that the Lin-log formalism is the more accurate 
formalism to be used in all cases (Heijnen, 2005). Our results show clearly that this is 
not generally true and that many different issues are at stake when using the different 
formalisms. One can always build conceptual systems for which a particular formal-
ism will be the most accurate. However, making the general statement that a given 
formalism is in general the most accurate requires an exhaustive analysis of different 
systems that, to our knowledge, no one has yet made. In the few examples we have 
tested, the SC formalism is among the ones with a bigger range of accuracy, especially 
when reactions take place in a dimensionally restricted space or when saturable and 
cooperative mechanisms are important for the dynamical behavior of the system.  

Mathematical models at work: some examples on the utility of models based 
on approximated representations

The choice of the formalism to be used to create a model for the analysis of a given 
problem depends on the available data, on the problem, and on personal preference 
and training. We shall now discuss guidelines and relevant criteria for selecting the 
types of representation that are more adequate in each specific type of problem. 
For simplicity, we shall discuss the relevant criteria to be used in choosing between 
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formalisms and the potential problems of the different formalisms, without technical 
details that would require a mathematical discussion. We will reference the relevant 
bibliography for those interested in such details.

GENOME-WIDE ANALYSIS AND PREDICTION OF CELLULAR PHENOTYPES 

By far, most genome wide models have been created using linear stoichiometric models 
(Becker, and Palsson, 2005; Duarte et al., 2004; Feist et al., 2007; Jamshidi and Pals-
son, 2007; Mo et al., 2007; Oh et al., 2007; Resendis-Antonio et al., 2007; Teusink et 
al., 2006; Thiele et al., 2005). By assuming that metabolism is at steady state one can 
analyze how certain changes in the environment or in a given gene propagate through 
the network, using a strategy known as Flux Balance Analysis (FBA). This analysis 
can improve our understanding of the relationships between genotype and phenotype 
(Edwards and Palsson, 1999; 2000a,b,c; Famili et al., 2003; Savinell and Palsson, 
1992a,b; Varma et al., 1993; Varma and Palsson, 1994). FBA is a constraint-based 
approach that uses optimization methods to find appropriate flux distributions that may 
be compatible with specific stoichiometric matrices (Savinell and Palsson, 1992a,b). 
The constraints often assume that the organism is using material from the medium at 
maximum uptake rates, or growing at maximum velocities, etc. These assumptions 
constrain the solution space for flux optimization and help to define physiologically 
feasible solutions for the flux distribution upon specific changes to the genome. For 
example, the essentiality of different genes was predicted by individually knocking 

Figure 3. Predictions of the new steady-state concentrations as we change the independent variable 
X5 while keeping the operating point of the approximations constant. The cross between the two 
lines in each plot indicates the operating point of the approximation. Abbreviations: Log(Xi)=Yi; SC for 
Saturable and Cooperative; PL for Power-law; GMA for Generalized Mass Action; SS for S-System; and 
LL for Lin-log and (log)linear formalisms. The x-axis of the plots represents time, while the y-axis of the 
plots represents concentration of the relevant metabolite. By and large, the SC model is the most accurate 
in approximating the dynamical behavior of the original system.
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out each gene in a genome-wide stoichiometric model of Saccharomyces cerevisiae 
metabolism. The predicted essentiality of a gene was experimentally confirmed in 
approximately 80% of the cases (Famili et al., 2003). Applying a similar modeling 
strategy, Schilling and co-workers (Schilling et al., 2002) developed a genome-scale 
metabolic model of Helicobacter pylori 26695. As stated by the authors, their analysis 
accurately predicted 10 of 17 gene deletion cases, when compared to actual phenotypes. 
The failures may be due to regulatory effects that cannot be accounted for using linear 
FBA models. Also, in its present formulation, FBA cannot predict metabolite levels 
and dynamic changes in metabolism. Recent proposals for increasing the accuracy of 
FBA analysis include considering thermodynamic constraints during the modelling 
and optimization (Feist et al., 2007; Henry et al., 2006; 2007; Hoppe et al., 2007). 

These results suggest that linear stoichiometric models and FBA analysis may ad-
equately provide a broad picture of how cellular metabolism works. The need to go 
beyond FBA while interpreting metabolomic data has been recently emphasized by 
Lee and colleagues (Lee et al., 2006). If one wants either to understand how specific 
parts of metabolism work or to increase the success rate in the predicting the associa-
tion between genotype and phenotype, one requires non linear models that account 
for regulatory signals. 

One natural way to extend FBA models is by using any of the formalisms previously 
discussed in this review, as they all account for regulatory interactions. Such models 
can also accurately predict dynamical aspects of the systemic behaviour. However, 
optimization in non-linear models is a difficult task. This explains why FBA is such 
a popular tool and why it is used in detriment of more detailed mathematical descrip-
tions. Currently, optimization techniques have been developed only for the Power-law 
formalism (see section dedicated to optimization issues). Thus, this mathematical 
description would be the most indicated to extend the FBA to the nonlinear and 
regulatory domain. The optimization techniques available for Power-law models, 
either in S-system or GMA forms, takes advantage of the mathematical structure of 
the Power-law representation and are not easily extensible to the other alternatives. 

PATHWAYS RECONSTRUCTION

In silico reconstruction of metabolic and signal transduction pathways and gene 
circuits is another type of common problem in Systems Biology. Traditionally, such 
reconstruction is based upon collecting published information for the individual 
enzymes and reactions that participate in the network one wants to reconstruct. Ex-
amples of this type of problem are many fold and range from metabolism to signal 
transduction, and to gene circuits. Some examples are the reconstructed network of 
Purine metabolism (Curto et al., 1997; 1998a,b), and the reconstruction of the whole 
metabolic network of red blood cells (Ni and Savageau, 1996a,b). Mathematical 
models of signal transduction pathways have provided new information on the basic 
properties of signalling cascades in connection with their targets (see Klipp and Lie-
bermeister, 2006  for a review). Another area where the use of mathematical models 
has facilitated the understanding of how a complex network of genes and proteins 
interacts to regulate and execute cellular functions is that of cell cycle (Alfieri et al., 
2007; Allen et al., 2006; Barberis et al., 2007; Brazhnik and Tyson, 2006; Lau et al., 
2007; Novak and Tyson, 2003; Sible and Tyson, 2007; Zi and Klipp, 2007).
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Currently, a different type of reconstruction problem is emerging. Situations where 
a) new proteins and genes are found to play unknown roles in what were thought 
to be well characterized pathways, b) well known proteins play unknown roles in 
new pathways or c) unknown proteins play unknown roles in new ill-characterized 
pathways.  In such a situation, one asks a) what is the role of the proteins in the path-
way, b) what is the structure of the network underlying the pathway or c) what is the 
structure of the pathway and which role does each protein play? 

To answer these questions one can create sets of mathematical models where large 
scale scanning of network structures and interactions can be done efficiently. In ad-
dition, for each network structure, extensive parameter scans must be fairly easy to 
execute. Comparison of the systemic behaviour of the models representing the alter-
native network structures to know aspects of the in vivo dynamical behaviour of the 
system can assist in choosing which network structures are more likely. This helps in 
prioritizing which hypothesis should be tested first regarding the system. 

Using this strategy, Alves et al. have investigated the iron sulphur cluster biogen-
esis pathway of S. cerevisiae (Alves et al., 2004a,b; Sorribas et al., 2007). A set of 
alternative network structures was reconstructed from literature, structural, and expert 
information, and the resulting models were analyzed to compare dynamic predic-
tions with experimental data. As a result, a number of hypotheses on the reaction 
and regulatory structure of the network that underlies iron sulphur cluster biogenesis 
could be discarded. Furthermore, specific experiments were suggested for obtaining 
information that would allow resolving the fine details of the network.  Bas Teusink’s 
group has been developing a method where sequence homology analysis is combined 
with the existence of well curated full metabolic networks to reconstruct the metabolic 
networks of new genomes (Francke et al., 2005; Notebaart et al., 2006; Teusink et al., 
2005; 2006). The major application of these methods has been to the reconstruction 
of L. lactis metabolism (Teusink et al., 2005; 2006). Su et al. reconstruct both the 
pathway of phosphate assimilation and the gene circuits that regulate the expression 
of that pathway in Synechococcus, by using a combination of genomic and interaction 
information (Su et al., 2006). A combination of literature analysis and microarray 
data analysis has also been used to derive a regulatory network for E. coli and test 
the consistency of microarray data based predictions (Gutierrez-Rios et al., 2003). 
The regulatory network of the galactose biosynthesis pathway in yeast has also been 
reconstructed in silico by combining microarray data and protein interaction data 
(Darvish and Najarian,, 2006). A combination of time series gene expression analysis 
and in silico prediction of transcription factor biding sites has been used to define 
regulatory modules in the inflammatory response of the macrophage, suggesting novel 
roles for the transcription factors ATF3 and NRF2 (Nilsson et al., 2006).

The combination of different datasets to generate testable hypothesis regarding 
the alternative connectivity of pathways is still a fairly manual process. For the most 
part, this process lacks a well defined structure and only partially allows for automatic 
combination of the different datasets. Some groups are already structuring various 
approaches. For example, Su et al. propose and apply an integrative approach for 
gene network reconstruction (Su et al., 2006) as do Alves and Sorribas for the case 
of iron-sulfur cluster biogenesis (Alves et al., 2004a,b; Sorribas et al., 2007). 

Because of the characteristics of this type of work, it is important to have a regular 
formalism for automated scanning of network structures. Any of the approximated 
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formalisms can facilitate this task. However, given that the parameter scans will as-
suredly take the system away from the operating point, it is important to choose an 
approximation whose range of accuracy is large. This, together with the fact that rates 
of biological processes often saturate, suggests that the SC formalism might be more 
appropriate for this task. However, if the network to reconstruct is large, this approxi-
mation will significantly increase the number of parameters one has to scan. In practice, 
the Power-law formalism might be an appropriate initial choice in those cases where 
the pathway to reconstruct is suspected to have a large number of individual processes 
that are to be considered. In subsequent, more detailed modelling analysis, one may 
use the SC formalism for those processes that depend on saturation effects. Thus, a 
mixed Power-law and SC model may help in characterizing the system’s dynamic 
response. The Lin-log and the (log)linear could be used for the same task instead of 
the Power-law representation. However, as negative velocities may appear for low 
metabolite values, these two alternatives seem less appropriate than the Power-law 
formalism when it comes to the analysis of quantitative results. 

DESIGN PRINCIPLES 

The study of design principles in the structure of biological networks is a few decades 
old and was started by Savageau (1972; 1976). He developed a method, known as 
mathematical controlled comparisons, that allows for the comparison of alternative 
network structures by applying mathematical controls when comparing the dynamic 
behavior of models for the alternative networks. These controls ensure that any dif-
ference in the dynamic behavior of the system is due exclusively to the differences in 
topology between the alternative networks and not to other spurious differences. The 
differences in dynamic behavior are rationalized in terms of the functional require-
ments for the networks, and often this has implication for the evolution and ecology 
of the organisms (Savageau, 1974; 1976; 1998). 

If one is interested in analyzing qualitative design principles of a network, that 
is, why a given network structure and not some other is selected to perform a given 
function, then one needs to compare the dynamic behavior of alternative classes of 
systems. Then, it is desirable that one is able to calculate the relevant properties of 
the alternative systems in closed form. Thus, the use of a mathematical formalism 
that has an analytical solution for those properties is required. This excludes the SC 
formalism as an option for this type of studies. The more widely used formalism 
for this purpose is the Power-law formalism (Alves and Savageau, 2000a,b; 2003; 
Hlavacek and Savageau, 1995; 1996; 1997; Igoshin, et al., 2006; 2007; Irvine and 
Savageau, 1985a,b; Wall et al., 2003; 2004). The S-system representation within 
this formalism has an analytical solution at the steady-state. This, together with the 
normally wider range of accuracy, makes the S-systems representation within the 
Power-law formalism ideal for use in the comparison of steady-state properties. The 
Lin-log formalism also provides an analytical solution for the steady-state and could 
be used for such comparisons.

Mathematical controlled comparisons have been extensively used to explore de-
sign principles in gene regulatory networks (Hlavacek and Savageau, 1995; 1996; 
1997; Igoshin et al., 2006; 2007; Savageau, 1998; Wall et al., 2003; 2004), in signal 
transduction networks (Alves and Savageau, 2003), in metabolic networks (Alves and 
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Savageau, 2000; 2001, Savageau, 1972; 1976), and in immunological networks (De 
Boer and Hogeweg, 1987, Irvine and Savageau, 1985a,b; Ray and Kirschner, 2006). 
Often, for more complicated networks, the qualitative differences between relevant 
properties of alternative network designs are dependent on parameter-values. For 
example, the ratio between the sensitivity of network design A to some signal and 
the sensitivity of network design B to the same signal may be smaller or larger than 
one, depending on the actual parameter values. If this is the case, then a closed form 
solution does not help in deciding which system is better designed for a specific type 
of response to that signal. An extension of the method has allowed for the use of 
statistical mathematically controlled comparison (Alves and Savageau, 2000). This 
extension compares a large number of equivalent specific instances of alternative 
network designs and uses statistical criteria to understand which of the alternatives 
is more likely to be appropriately designed for a specific type of response. If a sta-
tistical mathematically controlled comparison is to be done, any of the formalisms 
can be used because parameters are attributed values and the comparisons are made 
numerically. In such cases, the formalism that is chosen to represent the model must 
consider the criteria discussed in this and previous sections.

It should be noted that statistical mathematically controlled comparisons can also 
be used as a subsequent step in the analysis during a traditional mathematically con-
trolled comparison (Alves and Savageau, 2000; Schwacke and Voit, 2004). While the 
traditional comparison will provide information about the qualitative differences in 
systemic behavior, the statistical comparison will provide a statistical quantification 
of those differences. 

As a final note we would like to point that Lau et al. have applied a form of un-
controlled comparison to the analysis of a Boolean network model to infer design 
principles in the network that controls cell cycle regulation and progression (Lau et 
al., 2007).

OPERATIONAL PRINCIPLES 

While analysis of qualitative design principles provides information about the evolu-
tion of network structures, analysis of operational principles provides information 
about fine tuning of parameters, about the evolution of specific dynamic behavior, 
once a network structure is in place, and the emergence of new regulatory require-
ments (Voit, 2003a,b). This is essentially a numerical task, although it may also require 
extensive scanning of network structure and parameter values. Thus, considerations 
similar to those discussed in the section devoted to pathways reconstruction should 
be taken into account when choosing a mathematical formalism to create model for 
this type of study. 

In the context of the formalisms discussed in this review, this kind of systems bi-
ology problem has mainly been addressed through Power-law models. Operational 
principles on the adaptive response of yeast to heat shock have been investigated us-
ing models created with this formalism.  Voit and Radivoyevitch (2000) suggest that 
the actual gene expression profile after heat shock seem to be an optimal functional 
solution for the cellular adaptation to heat. Vilaprinyo et al. (2006) extended this 
work and identified a set of functional criteria that explain the adaptive response of 
yeast to temperature changes. 
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Using classical kinetics approaches, Klipp et al. (2005) have analyzed osmotic 
response of yeast. Another example of this sort is the analysis of the implications 
beyond the quantitative values of human erythrocytes enzymes by Salvador and 
Savageau (2003; 2006). The potential of the SC formalism for application to this type 
of problems remains to be studied. 

We would also like to stress that, while studying operational principles, the choice 
of formalism is often crucial for the correctness of the analysis. As we have shown for 
the system in Figure 1, the comparison of different formalisms reveal differences in 
the predicted behavior. A careful interpretation of the results for operational responses 
and optimization predictions should take into account the limitations and specifici-
ties of the selected formalism. This is especially relevant when we predict dynamic 
responses away from the operating point. 

OPTIMIZATION 

Trial and error strategies are behind many classical biotechnological applications, such 
as selecting yeast strains for bread and wine production, in an attempt to optimize 
the production of specific metabolites by the microbes. Despite clear methodological 
progress, the need for more efficient strategies in developing such applications is now 
evident, especially in connection with our ability to measure and manipulate cellular 
processes and gene expression. Mathematical models are at the core of a more efficient 
strategy for developing new biotechnological applications. These models are a tool 
that can be used for predicting the effect of alternative manipulations, thus creating 
a rank of priorities for which alternatives to implement first. 

While using models to assist in the development of cellular strains that optimize 
production of some metabolite, mathematical optimization techniques play an impor-
tant role. These techniques identify the changes in the values of systemic parameters 
that will make the system better achieve the relevant production goals. In the context 
of dynamic models, global optimization techniques for linear models are well known. 
In fact, the success of FBA applications relies on those methods. General and global 
optimization techniques that can be applied to non-linear models do not exist6. Several 
optimization methods may work for such models, but the results one obtains from 
applying those methods are more likely to be local than global optima. Canonical 
formalisms, such as the ones discussed in this review, can be helpful for developing 
global optimization methods for non-linear models.

To our knowledge, global optimization methods that rely on the formalism of the 
mathematical models have only been specifically developed for Power-law models 
(Marin-Sanguino and Torres, 2003; Torres and Voit, 2002). These methods are based 
on the fact that the steady-state equations for an S-system can be written as a linear 
system in log-log coordinates (Voit, 1992). Some examples that illustrate the advan-
tage of using well structured and canonical models are the optimization of citric acid 
production (Alvarez-Vasquez et al., 2000), tryptophan production (Marin-Sanguino 
and Torres, 2000), ethanol production (Vera et al., 2003), and L-carnitine production 

6 Genetic algorithms, simulated annealing and other global optimization methods exist. However, in 
practice, these methods are only global optimization methods if one allows the optimization to run for an 
infinite amount of time.
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(Alvarez-Vasquez, et al., 2002; Sevilla et al., 2005). The method has also been used 
to identify potential targets for drug action (Vera et al., 2007). Recently, this method 
has been adapted through the utilization of geometric programming and it can be used 
for GMA models (Marin-Sanguino et al., 2007). 

In the future, optimization results obtained using non-linear dynamical models 
should be compared to those obtained through the use of FBA models. If the former 
results are a part of the set defined by the later results, FBA models could be used 
as an exploratory tool for optimization, before using more complete descriptions of 
the target system.

PARAMETER ESTIMATION THROUGH FITTING OF MODELS TO DYNAMIC DATA 

Parameter estimation is one of the most difficult problems related to model building 
and utilization. As discussed previously, one of the important limitations of current 
data bases is the lack of specific information on kinetic properties of enzymes, which 
precludes using previous knowledge in the automatic generation of models. Further-
more, although such information can sometimes be retrieved by human curation from 
classical papers, in most cases the information refers to in vitro experiments performed 
in a plethora of conditions that do not reflect those within the cell.

In systems biology applications, in vivo measurements for the dynamical behav-
iour of the system are the data sets that would provide appropriate information for 
identification of systemic mechanisms and estimation of parameter values. Any of 
the formalisms discussed in this review can be used for such estimation purposes, if 
appropriated estimation procedures are devised. Due to the numerical problems that 
procedures for estimating parameter values must face (numerical integration of the 
differential equations, minimization, etc.), developing specific strategies that take 
advantage of the mathematical structure of each of the formalisms would greatly 
facilitate the estimation task.

To our knowledge, parameter identification procedures have been developed 
specifically only for Power-law models. One strategy that facilitates the estimation 
from dynamic data is the decoupling of the model equations, by estimating the slopes 
to substitute the derivatives (Lall and Voit, 2005; Veflingstad et al., 2004; Voit and 
Almeida, 2004). In a different approach, genetic algorithms have been used as a 
method that can significantly speed-up the search for the best parameter set (Kimura 
et al., 2005). Hybrid differential evolution has also been tested as a method that 
could provide a global solution to the estimation problem (Tsai and Wang, 2005). 
Simulated annealing, has been tested as a method for finding an appropriate data set 
for S-system models (Gonzalez et al., 2007). All these methods have been developed 
for S-system models. A procedure that is specific for GMA models and use branch 
and bound methods has been proposed. This procedure finds a global optimization 
solution to the fitting problem (Polisetty  et al., 2006).

More recently, a new strategy base on alternate regression has been developed to 
facilitate the estimation task and avoid some of the numerical issues (Chou et al., 
2006). This strategy emphasizes the utility of using smoothing techniques for represent-
ing the time course of some variables while fitting parameter values. The smoothing 
techniques reduces the fitting problem to an iterative procedure that fits the values 
for a few parameters at each step of the iteration (Vilela et al., 2007). 
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What must be emphasized is that parameter identification from dynamic data is a 
difficult task that must overcome the following problems:

(1)  Collection of appropriate data sets. Ideally, this should include different 
perturbations and as much data points as possible. Metabolomic methods are 
the techniques that may provide such a large amount of data. 

(2)  Consider alternative network structures that may explain the data. A good data 
fit does not assure that the considered model reflects the actual structure of the 
biological system.

(3)  Use the fitted model(s) to predict systems behaviour to unmeasured perturbations. 
Expert assessment of the predicted results and evaluation through appropriate 
experiments may help in finally assessing the best model and data set.

S-system and GMA models are the approximated models for which specific fitting 
methods have been developed. This makes them logical alternatives to be used for 
parameter fitting problems. SC models may provide an interesting alternative that 
could be used in cases where saturation is an issue for the processes under study. 

Discussion

As discussed throughout this review, selecting a particular mathematical formalism 
and representation for a model is not a trivial issue. Each of the alternative formal-
isms has some advantages and limitations, which are related to being approximated 
representations of non-linear functions. 

Table 2 provides a summary of the properties for the different formalisms and 
representations, as well as a short list of advantages and disadvantages of using each 
of the formalisms. There is no type of problem for which one can say “always use 
this formalism for this type of problem”. Nevertheless, either due to the properties 
of the alternative formalisms and representations or to the tools that are available for 
a specific formalism, often, one can predict which alternative is more likely to be 
successful in a specific application, as was discussed above in the sections dedicated 
to the different formalisms. We would like to conclude by stressing again that we 
believe that the importance of these and other approximated formalisms in the study 
of biological systems is bound to increase, and become more central in Systems Biol-
ogy. The reasons for this are several-fold: 

1.  A large amount of sequence, genomic, proteomic, metabolomic and fluxomic 
data is accumulating without an elucidation of the mechanism of individual 
molecular steps in the organism. A consequence of this is that approximate 
formalisms are the only available tools for creating mathematical models that 
use the accumulated data to gain understanding about the integrated workings 
of the molecular systems that compose a cell. 

2.  A critical step in the modelling process is the parameterization of a model. 
Approximate formalisms use a small number of parameters per individual 
process. Additionally, for some formalisms, such as the power- law formalism, 
it is fairly easy to obtain reasonable estimates for parameter values using 
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only qualitative information about the dynamic of the system. Currently, 
SC, (log)linear and Lin-log models have less specific methods available to 
estimate parameter values than the power- law formalism. Additionally, the SC 
formalism uses at least one more parameter per equation than the other described 
formalisms, which implies that more information is needed to parameterize SC 
models. The upside is that, if such information is available, SC models are likely 
to have a higher range of numerical accuracy.

3.   Due to the uncertainty associated to many “omics” datasets and to the new 
pathways that are being discovered, it is important to have the ability to 
generate alternative models automatically. The use of approximate formalisms 
facilitates automation of the model set-up process. Because of the regular form 
of approximate formalisms, scripts that generate the mathematical models 
automatically based on the information provided by the conceptual schemas are 
easy to create. Automated model generation can then be connected to automated 
analysis of systemic behaviour, in a high-throughput manner. 

4.  The uncertainty of the data and the nature of models created using approximate 
formalisms allow for the possibility that, in the future, additional data may 
be generated that will prompt model update and reutilization. Again, the 
systematization of the modelling process that the use of approximated formalism 
allows is an advantage in this context.

5.  Last but not least, often, biotechnological applications require cells to be 
functioning in a very restricted range of their operational capacities, because 
they are kept under very constant environments. Due to their nature, approximate 
formalisms are ideal for modelling this type of situations, because a) they allow 
researchers to accurately predict how a system will behave around an operating 
point and b) they can do so using less than complete information about the 
intrinsic mechanisms underlying systemic function.  
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