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Scientific computation using machine-learning algorithms:
recent mathematical advances and applications

Over the last decade machine-learning and neural-network methodologies have matured tremen-
dously in the areas of computer vision, language processing and data science, and have given rise
to highly innovative and efficient algorithms for a wide-range of data-intensive applications.
Theoretical understanding of this remarkable performance of machine learning methodologies is an
emerging topic in mathematical research. On the other hand, it has been recognised only recently that
these learning methodologies lead to new solution paradigms for the computational applied sciences,
with significantly more efficient algorithms and the potential to cause a step change in designing
solution techniques for large-scale problems.
The aim of this workshop is to discuss recent advances in mathematical foundations of machine
learning and artificial neural networks as well as the application of these methodologies in computa-
tional science.

Venue
The workshop will take place on University Park Campus at the University of Nottingham.
Key buildings (with their numbers on the campus map, see previous page):
Talks: Teaching and Learning Building (62), Room C14
Breaks / Lunches: The Hemsley (8)
Registration will take place in Teaching and Learning Building (62) from 9.15am until 9.50am on
Thursday 25th April.
Talks will take place in the Teaching and Learning Building (62), Room C14.

Local transportation (tram, bus, taxi)
University Park Campus is a large campus that is well connected by tram, bus and accessible by taxis.
Two convenient tram stops are “University of Nottingham” and “University Boulevard” which con-
nect to the Nottingham city center (e.g., “Old Market Square” and “Nottingham Station”). For buses
see https://www.nottingham.ac.uk/sustainability/transport/publictransport/busservices.aspx. Good
taxi services include “DG Cars” (+44 115 9 500 500) and “Uber”.

Coffee breaks and lunches
Coffee/tea, refreshments and lunches will be provided at the times indicated in the programme in The
Hemsley (which is the building next to the Teaching and Learning Building).

Dinner on Thursday
We will go out for dinner on Thursday evening to the restaurant MemSaab in Nottingham city centre.
Further details will be communicated on the day.

Internet Access
Visiting delegates can access the University WiFi in one of two ways:
1. Eduroam. Connect to Eduroam as you would at your home institution. You may need to forget
Eduroam and connect to it as intended. Additional guidance on
https://www.nottingham.ac.uk/it-services/connect/wifi/academics.aspx
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2. UoN-guest network. There is the UoN-guest network for short term visitors including con-
ference delegates. Connect to UoN-guest and create an account (which needs confirmation through
email). Additional guidance on https://www.nottingham.ac.uk/it-services/connect/wifi/visitors.aspx

Acknowledgement
The organisers would like to thank the Universities of Birmingham and Nottingham for financial
support of the workshop through the Birmingham–Nottingham Strategic Collaboration Fund.
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Programme
Thursday 25th April 2019
09.15 – 09.50 Registration
09.50 – 10.00 Welcome and opening remarks
10.00 – 11.00 Jan Hesthaven

On the Use of Machine Learning in Computational Science and Engineering
11.00 – 12.00 Philipp Petersen

Challenges and Opportunities for Numerical Solvers of PDEs Based on
Deep Neural Networks

12.00 – 13.30 Lunch
13.30 – 14.30 Jakub Marecek

Scaling Up Deep Learning for PDE-based Models
14.30 – 15.30 Kaj Nyström

Some Thoughts on Neural Networks, PDEs and Data-Driven Discovery
15.30 – 16.10 Coffee break
16.10 – 16.35 Markus Geveler

Machine Learning Approaches for the Acceleration of the Linear Solver in
PDE Simulations

16.35 – 17.00 Jim Magiera
Constraint-Aware Neural Networks for Riemann Problems

17.00 – 17.25 Yufei Zhang
Rectified Deep Neural Networks Overcome the Curse of Dimensionality for
Nonsmooth Value Functions in Zero-Sum Games of Nonlinear Stiff Systems

Friday 26th April 2019
09.00 – 10.00 Martin Eigel

A Statistical Learning Approach for Parametric PDEs
10.00 – 11.00 Ahmed Elsheikh

Machine Learning Approaches for Uncertainty Quantification of Subsurface
Flow Models

11.00 – 11.40 Coffee break
11.40 – 12.40 Desmond Higham

Numerical Precision in Deep Learning
12.40 – 13.30 Panel Discussion

Perspectives of Machine Learning Algorithms in Numerical Analysis
and Scientific Computing
Panelists: Jan Hesthaven, Desmond Higham

13.30 Closing remarks and lunch
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A statistical learning approach for parametric PDEs

Martin Eigel

WIAS, Berlin, Germany

martin.eigel@wias-berlin.de

Parametric PDEs (as encountered in the popular field of Uncertainty Quantification) are computa-
tionally complex due to the high dimensionality of the models describing random data. Common
numerical approaches are Monte Carlo methods for statistical quantities of interest and functional
approximations, representing the entire solution manifold in some function space. Assuming suffi-
cient regularity (or sparsity), the latter attain high theoretical convergence rates. In practice, this can
be realised e.g. by employing some kind of (a posteriori) error control. However, the implementation
usually is non-trivial and does not generalise easily.
We examine a non-intrusive Variational Monte Carlo (VMC) method based on statistical learning the-
ory. This provides a combination of deterministic and statistical convergence results. The Galerkin
solution can be computed with high probability by using a tensor recovery algorithm on a training
set of generated solution realisations. Similarly, a residual a posteriori error estimator can be recon-
structed easily, steering all discretisation parameters.
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Machine learning approaches for uncertainty quantification of
subsurface flow models

Ahmed H. Elsheikh
Heriot–Watt University, Edinburgh, UK

A.Elsheikh@hw.ac.uk

Computational models for multi-phase flow in porous media relies on a number of subsurface pa-
rameters that are poorly known (e.g. porosity and permeability fields). In practical setting, these
parameters are observed at sparse set of points (e.g wells) and/or indirectly using low resolution
imaging techniques (seismic surveys). Quantifying the impact of these parameters on the model out-
puts is an important task for robust decision support and risk assessment. In this talk, I will present
two different techniques to handle this challenging uncertainty propagation task given the high di-
mensionality of the input parameter space and the non-polynomial nonlinearities in the subsurface
flow model.
In the first part of my talk, I will introduced a machine learning based multiscale method [1] for
solving elliptic equations (e.g. pressure equation in subsurface flow problems). Several multiscale
methods account for sub-grid scale heterogeneities using coarse scale basis functions for upscalling.
For example, in the Multiscale Finite Volume method (FVM), coarse scale basis functions are ob-
tained by solving a set of local problems over a dual-grid. In this work, we introduce a data-driven
approach for estimating the coarse scale basis functions using a neural network (NN) predictor fitted
using a set of training data. For uncertainty propagation tasks, the trained NN learns to generate basis
functions at a lower computational cost when compared to solving the local problems. The computa-
tional advantage of this approach is realized when a large number of realizations has to be evaluated.
We attribute the ability to learn these basis functions to the modularity of the local problems and
the redundancy of the permeability patches between samples. The proposed method is evaluated on
single phase flow problems yielding very promising results.
In the second part of my talk, I will introduce a deep residual recurrent neural network (DR–RNN)
as an efficient model reduction technique for subsurface multi-phase flow problems [2]. DR–RNN
is a physics-aware recurrent neural network for modeling the evolution of dynamical systems. The
architecture of DR–RNN is inspired by iterative update techniques of line search methods where
a fixed number of layers are stacked together to minimize the residual (or reduced residual) of the
physical model under consideration. For subsurface flow models, we combine DR–RNN with proper
orthogonal decomposition (POD) and discrete empirical interpolation method (DEIM) to reduce the
computational complexity associated with high-fidelity numerical simulations and thus reduce the to-
tal cost of uncertainty quantification tasks. Our numerical evaluations show that DR–RNN combined
with POD–DEIM provides an accurate and stable reduced models with a fixed computational budget
that is much less than the computational cost of standard POD–Galerkin reduced model combined
with DEIM.

References
[1] S. CHAN, A. H. ELSHEIKH, A machine learning approach for efficient uncertainty quantifica-

tion using multiscale methods, Journal of Computational Physics, 354, 2018, 493–511.

[2] J. N. KANI, A. H. ELSHEIKH, Reduced-Order Modeling of Subsurface Multi-phase Flow Mod-
els Using Deep Residual Recurrent Neural Networks, Transport in Porous Media, 126 (3), 2019,
713–741.
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Machine learning approaches for the acceleration of
the linear solver in PDE simulations

Markus Geveler, Hannes Ruelmann, and Stefan Turek

TU Dortmund, Germany

markus.geveler@math.tu-dortmund.de

While there is no doubt that Machine Learning empowers several scientific fields and industries
and that it fires the hardware markets to adjust their portfolio to it, the major question asked when it
comes to actually using it in Scientific (High Performance-) Computing is how to employ it alongside
traditional methods efficiently. This imposes the necessity to not only adjust existing methods in the
field of artificial neural networks to existing simulation pipelines but also for a careful performance
modelling and -engineering. Both require a fundamental understanding of the design and theory of
Machine Learning.
In the course of discretising Partial Differential Equations (PDEs) for real-world simulations at a
certain point we have to deal with a high number of degrees of freedom leading to the global system
matrix being large and sparse. Hence, iterative methods have to be chosen over direct ones. In the
former everything breaks down to how clever the linear solver can adapt to the system to be solved
and here using specially tailored solvers that are implemented in a target hardware-oriented way can
be orders of magnitude faster than simple ones.
For this very general case of the solution of linear systems arising in simulations based on PDEs, we
demonstrate simple and yet comprehensive Machine Learning methods [2], [1] that can accelerate
these. For an early stage of development, we discuss their design, implementation, potential and
efficiency in the context of modern compute hardware such as GPUs.

References
[1] RUELMANN, H., GEVELER, M., AND TUREK, S. On the prospects of using machine learn-

ing for the numerical simulation of PDEs: Training Neural Networks to assemble Approximate
Inverses. ECCOMAS newsletter issue 2018, 27–32.

[2] RUELMANN, H. Approximation von Matrixinversen mit Hilfe von Machine Learning. Master’s
thesis, TU Dortmund, Dortmund, Germany, 2017.
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On the use of machine learning in computational science
and engineering

Jan S. Hesthaven

EPFL, Lausanne, Switzerland

jan.hesthaven@epfl.ch

During the last few years, the rapid development of machine learning techniques, eg advanced Gaus-
sian process regression and neural networks, has led to remarkable advances in image classification,
machine translation, and automatic game playing to name a few. However, for the simulation of
complex problems in computational science and engineering, these advances are just beginning to
have an impact and many challenges remain open.
In this presentation we discuss ways in which the remarkable power of such techniques in areas of
regression and classification can be harvested to address problems that challenge traditional simula-
tion techniques. Through a few concrete examples, ranging from image interpolation to intrusive but
collaborative approaches, comprising a combination of classic simulations and machine learning, we
show the potential for such emerging ideas in computational science and engineering and highlight
challenges and open questions.
This work has been done in collaboration with D. Ray (EPFL, CH), Q. Chen (EPFL, CH), M. Guo
(EPFL, CH), Z. Zhang (EPFL, CH), J. Magiers (Stuttgart, D), S. Ubbliani (USI, CH) and J. Yu
(Beihang Uni, China).

Numerical precision in deep learning

Desmond Higham

University of Strathclyde, Glasgow, UK

d.j.higham@strath.ac.uk

Modern deep learning computations are pushing the boundaries of large scale high performance
computing. To deal with very high dimensional data sets, such as images and videos, and to train and
implement hugely-parametrized models, the tools of deep learning must overcome severe hurdles.
In particular, several studies have shown that a trained deep network for image classification can be
fooled by carefully-chosen perturbations—a correctly categorized photo can be altered in a way that
is imperceptible to the human eye but causes mystifying misclassification. In this talk we will focus
on a closely-related issue concerning the sensitivity of deep network outputs: the extent to which
results can be trusted if we account for floating-point rounding errors, especially when customized
low-precision hardware is employed.
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Constraint-aware neural networks for Riemann problems

Jim Magiera

Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Germany

jim.magiera@mathematik.uni-stuttgart.de

During the last few years many breakthroughs in the field of machine learning have been achieved.
This has given rise to data driven modeling where the input–response relation of a complex/expensive
model is learned with the help of machine learning algorithms to yield a reduced model [1, 2]. How-
ever, in many applications the learned/reduced model does not ensure physical constraints, like for
example mass or momentum conservation.
Consequently, we want to develop a machine learning framework that respects physical constraints
in the context of compressible flow governed by Euler equations. To this end, we investigate two
methods to build neural networks that are constraint-aware, i.e. that they incorporate knowledge
about underlying physical constraints during their generation. One of these methods satisfies the
given constraints exactly, whereas the second method satisfies them only approximately.
To test these two methods, we consider three different model problems based on hyperbolic con-
servation law. For each of these model problems, the goal is to learn a network that acts as an
Riemann solver in a numerical front-capturing scheme, while upholding the Rankine–Hugoniot con-
ditions (e.g. mass, momentum and energy conservation across discontinuities). We compare the two
constraint-aware methods with standard neural networks and test the performance of all methods
applied to actual numerical simulations.

References
[1] F. Kissling and C. Rohde, The Computation of Nonclassical Shock Waves in Porous Media with

a Heterogeneous Multiscale Method: The Multidimensional Case, Multiscale Modeling & Sim-
ulation, Vol. 13, Issue 4, 2015.

[2] J. Magiera and C. Rohde, A Particle-Based Multiscale Solver for Compressible Liquid–Vapor
Flow, in: Theory, Numerics and Applications of Hyperbolic Problems II (ed. by C. Klingenberg
and M. Westdickenberg), Springer International Publishing, 2018.
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Scaling up deep learning for PDE-based models

Jakub Marecek

IBM Research, Dublin, Ireland

jakub.marecek@ie.ibm.com

In numerous applications, forecasting relies on numerical solvers for partial differential equations
(PDEs). Although the use of deep-learning techniques has been proposed, the uses have been re-
stricted by the fact the training data are obtained using PDE solvers. Thereby, the uses were limited
to domains, where the PDE solver was applicable, but no further. We present methods for training
on small domains, while applying the trained models on larger domains, with consistency constraints
ensuring the solutions are physically meaningful even at the boundary of the small domains. We
demonstrate the results on an air-pollution forecasting model for Dublin, Ireland.
This is joint work with Philipp Haehnel (Harvard University), Julien Monteil (IBM Research), and
Fearghal O’Donncha (IBM Research).

Some thoughts on neural networks, PDEs
and data-driven discovery

Kaj Nyström

Uppsala University, Sweden

kaj.nystrom@math.uu.se

In this talk I will discuss some experimental results/observations concerning unified neural network
approximations to PDEs and how to augment methods for inverse problems for PDEs with neural
networks. Time permitting I will also discuss data-driven discovery of PDEs.
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Challenges and opportunities for numerical solvers of PDEs
based on deep neural networks

Philipp Petersen

Mathematical Institute, University of Oxford, UK

pc.petersen.pp@gmail.com

Novel machine learning techniques based on deep learning have achieved remarkable results in many
areas such as image classification and speech recognition. As a result, many scholars have started
using them in areas which are not traditionally associated with machine learning. For instance, more
and more researchers are employing deep neural networks to develop tools for the discretisation and
solution of partial differential equations. Two reasons can be identified to be the driving forces behind
the increased interest in neural networks in the area of the numerical analysis of PDEs. On the one
hand, powerful approximation theoretical results have been established which demonstrate that neural
networks can represent functions from the most relevant function classes with a minimal number of
parameters. On the other hand, highly efficient machine learning techniques for the training of these
networks are now available and can be used as a black box. In this talk, we will give an overview of
some approaches towards the numerical treatment of PDEs with neural networks and study the two
aspects above. We will recall classical and some novel approximation theoretical results and tie these
results to PDE discretisation. Additionally, we will present theoretical results that show that neural
networks can very efficiently solve parametric PDEs without curse of dimension if these parametric
PDEs admit a sufficiently small reduced basis. Providing a counterpoint, we analyse the structure
of network spaces and deduce considerable problems for the black box solver. In particular, we will
identify a number of structural properties of the set of neural networks that render optimisation over
this set especially challenging and sometimes impossible.

12



Rectified deep neural networks overcome the curse of
dimensionality for nonsmooth value functions in

zero-sum games of nonlinear stiff systems

Yufei Zhang

Mathematical Institute, University of Oxford, UK

yufei.zhang@maths.ox.ac.uk

In this talk, we establish that for a wide class of controlled stochastic differential equations (SDEs)
with stiff coefficients, the value functions of corresponding zero-sum games can be represented by a
DNN, whose complexity grows at most polynomially in both the dimension of the state equation and
the reciprocal of the required accuracy. Such nonlinear stiff systems may arise, for example, from
Galerkin approximations of controlled stochastic partial differential equations (SPDEs), or controlled
PDEs with uncertain initial conditions and source terms. This implies that DNNs can break the curse
of dimensionality in numerical approximations and optimal control of PDEs and SPDEs. The main
ingredient of our proof is to construct a suitable discrete-time system to effectively approximate the
evolution of the underlying stochastic dynamics. Similar ideas can also be applied to obtain expres-
sion rates of DNNs for value functions induced by stiff systems with regime switching coefficients
and driven by general Lévy noise.
This is a joint work with Christoph Reisinger (Mathematical Institute, University of Oxford, United
Kingdom).

References
[1] Christoph Reisinger and Yufei Zhang, Rectified deep neural networks overcome the curse of

dimensionality for nonsmooth value functions in zero-sum games of nonlinear stiff systems,
preprint, arXiv:1903.06652, 2019.
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Panel discussion
Perspectives of machine learning algorithms in

numerical analysis and scientific computing

Panelists:
Jan Hesthaven (EPFL, Switzerland)
Desmond Higham (University of Strathclyde, UK)

• What are the major mathematical challenges in this area?

• What areas of numerical analysis and scientific computing stand to benefit from machine learn-
ing/deep learning techniques?

• Can we identify some hot research themes/directions in this area?

• Are machine-learning algorithms and deep neural networks going to become ‘universal solvers’
that would replace our cherished FEM, BEM, etc.?

• Embed machine learning into numerical analysis or numerical analysis into machine learning?

• What computational resources are needed for
(i) simple numerical experiments for model problems, and
(ii) medium-range engineering applications?

• What existing (open-source) software can be useful?

• What educational resources are available for self-study (e.g., books, survey articles)?

In this panel discussion, we will address these and perhaps other relevant questions.
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